

Mr. Neil Haggerty, Environmental Review Section

U. S. Nuclear Regulatory Commission

Division of Waste Management and Environmental

**Protection** 

11545 Rockville Pike Mail Stop T-7J08

Washington, DC 20555-0001

Direct tel: 803-647-3338 Direct fax: 803-695-3964

e-mail: parrnb@westinghouse.com

Your ref:

Our ref: LTR-RAC-06-74

September 8, 2006

SUBJECT: WESTINGHOUSE REQUEST FOR ADDITIONAL INFORMATION RESPONSES REGARDING THE ENVIRONMENTAL ASSESSMENT SUPPORTING SNM-1107 LICENSE RENEWAL (TAC 31911)

The following enclosure and supportive documentation is being provided by Westinghouse Electric Company (WEC) in response to the NRC License Renewal Application Request for Additional Information regarding the Environmental Assessment, dated July 26, 2006.

After you have reviewed the responses and supporting information, WEC looks forward to discussing any additional questions or concerns with you over the phone or at the Columbia Fuels Fabrication Facility (CFFF).

Sincerely,

Nancy Blair Parr

Licensing Manager

Nancy Blair Parr

Enclosure 1: Response to Environmental Assessment RAI Questions

cc:

Ms. Mary T. Adams, Senior Project Manager U. S. Nuclear Regulatory Commission Fuel Cycle Facilities Branch Division of Fuel Cycle Safety and Safeguards 11545 Rockville Pike Mail Stop T8A33 Rockville, MD 20852-2738

U. S. Nuclear Regulatory Commission Attn. Mr. John Pelchat, Region II Sam Nunn Atlanta Federal Center 61 Forsyth Street, SW, Suite 23T85 Atlanta, Georgia 30303-8931

# RAI RESPONSES FOR WESTINGHOUSE COLUMBIA FUEL FABRICATION FACILITY LICENSE RENEWWAL ENVIRONMENTAL ASSESSMENT

# **RAI 1 Response**

The Westinghouse Columbia Fuel Fabrication Facility (CFFF) is located near Columbia, South Carolina and is situated on an approximately 1,158 acre site in Richland County, some 8 miles southeast of the city limits of Columbia along South Carolina Highway 48. The region around the site is sparsely settled, and the land is characterized by timbered tracts and swampy areas, penetrated by unimproved roads. Farms, single-family dwellings, and light commercial activities are located chiefly along nearby highways.

Of the total 1,158 acres, approximately 1098 acres of the site remain undeveloped. No licensed activities occur on this undeveloped property. Only 60 acres (about 5 percent) have been developed to accommodate the licensed activities associated with the fuel fabrication facilities, holding ponds, and landscaped areas.

Unlicensed activities that are conducted on the site include management of the forested areas for timber production; harvesting of the hay fields; employee hunting and fishing in designated areas of the plant property in accordance with the Westinghouse Hunting and Fishing Agreement; target practice for the on-site, contract security force; property surveillance on unimproved roads; recreational activities such as a one-mile fitness trail, softball field and picnic pavilion for employee use; operation of an air sparging/soil vapor extraction unit for groundwater remediation of volatile organic compounds; and any general land maintenance activities necessary to maintain the visual and scenic resources. In addition, in 2005, a parcel of land was transferred to South Carolina Electric and Gas (SCE&G) for a new electrical substation. Additional information regarding this substation is provided in response to RAI 14.

## **RAI 2 Response**

The Westinghouse CFFF is located in rural southeast Richland County on the southeast edge of the Columbia Metropolitan Statistical Area (MSA). Based on discussion with the South Carolina Department of Health and Environmental Control (SC-DHEC), certain combined portions of the Lexington/Richland County MSA are designated as marginally non-attainment for the ozone 8 hour standard, and the state has entered into an Early Action Compact to defer the actual date of official non-attainment designation. Compliance with National Ambient Air Quality Standards (NAAQS) in metropolitan areas is typically related to local area meteorology, transportation, and major permitted dischargers (such as coal burning) that effect the primary pollutants.

Two of three SC-DHEC monitoring sites within the MSA are classified as "Attaining." The CFFF is located proximal to the SC-DHEC Congaree Bluff sampling site. Westinghouse does not conduct on-site monitoring for ambient air quality. Compliance with air regulations is demonstrated by issuance of the state air permit and emissions

modeling. The SC-DHEC Bureau of Air Quality Air Permit, SC#1900-0050 issued in May 2003 documents conditions and limitations. A copy of the air permit is attached.

## **RAI 3 Response**

SC-DHEC Bureau of Air Quality issued the CFFF a state air permit in May 2003 documenting that Westinghouse was not regulated under more stringent conditions (i.e., major or significant minor emitter). Westinghouse is required to comply with the emission limitations in Section II of the permit. No requirements were noted whereby Westinghouse had to monitor the six primary criteria air pollutants (ozone, particulates, carbon monoxide, nitrogen dioxide, sulfur dioxide, and lead) noted in federal ambient air quality standards. Westinghouse has not monitored for those NAAQS pollutants, since no regulatory requirements were noted which required monitoring. This is confirmed by the state of South Carolina review of our air emissions and requiring the noted level of permitting.

## **RAI 4 Response**

The following table documents the calculated site boundary radiological dose information based on annual stack emissions for the past six years:

| Year | Total uCi<br>Uranium Released | Dose, mrem/year |  |
|------|-------------------------------|-----------------|--|
| 2000 | 501.8                         | 0.30            |  |
| 2001 | 557.6                         | 0.35            |  |
| 2002 | 556.1                         | 0.35            |  |
| 2003 | 510.5                         | 0.32            |  |
| 2004 | 598.6                         | 0.38            |  |
| 2005 | 530.9                         | 0.34            |  |

The radiological dose was calculated using the EPA "Comply" meteorological code assuming an individual at the nearest site boundary. These results are reported annually in the ALARA report. These annual doses are significantly below the ALARA goal noted in NRC Regulatory Guide 8.37; are significantly below the dose constraint level of 10mrem/yr in 10 CFR 20.1101(d); and are significantly below internal plant procedural investigation levels.

#### RAI 5 (1) Response

Radiological waste treatment and liquid effluent monitoring is documented in Section 5.0 of the Environmental Report. Documentation of liquid effluent and sampling is described in the flow diagram depicted in Attachment 3 of the Environmental Report, noting that all waste liquid effluents are combined and discharged to the Congaree River

in one line (outfall 001). All radioactive waste streams are treated and checked prior to discharge according to criteria noted in Section 5.0, as documented below:

Process waste streams from the chemical processing area are discharged from the combined ADU conversion area filtration/quarantine tank system. Preliminary treatment of liquid waste for the removal of uranium is completed in the ADU conversion area by the controlled area waste quarantine tank system equipped with an on-line monitoring system. This on-line NaI well detector spectroscopy system alarms and diverts waste to additional quarantine tanks and filtration, if the uranium concentration exceeds 30 ppm uranium (equivalent to 7.2 E-05 uCi/ml). Liquid waste from this system is pumped to the external waste treatment facility for additional radiological and chemical treatment. This second treatment system assures that the uranium in the liquid effluent is removed to a nominal level of 0.5 ppm uranium (equivalent to 1.2 E-06 uCi/ml at a specific activity of 2.4 uCi/gU).

The external waste treatment facility further processes the liquid waste for removal of uranium to de minimus levels at the Waterglass Advanced Wastewater Treatment facility. This process involves treatment of the liquid effluent stream with water soluble sodium silicate and precipitation and removal the uranium as an insoluble product using the Artisan continuous rotary pressure filter where the cake like solids containing uranium are removed. The Waterglass process effluent is typically controlled to insure that the liquid effluent is less than 0.5 mg U/l. Liquid waste may be stored in large storage tanks. Following uranium removal the liquid effluent waste is transferred to 30,000 gallon storage holding tanks in preparation for ammonia removal and recovery at the ammonia distillation process. All liquid process wastes are further treated in the West I or West II lagoons to assure removal of ammonium fluoride contaminants and compliance with the site EPA/SC-DHEC NPDES liquid effluent discharge permit. The supernatant liquid from the West I or West II lagoon is decanted to the North or South Lagoon. Daily batch operation discharges are determined to assure NPDES permit values and NRC limits are met. In addition, prior to final discharge of the process lagoon liquid effluent, over check analyses are performed on a batch basis on process liquid waste lagoons to assure that the final liquid effluent will meet required NRC discharge criteria.

A continuous proportional sample of the liquid released to Congaree River is collected and routinely analyzed to assure NPDES compliance. Also on a daily basis, a continuous proportional composite sample of the liquid effluent is collected and analyzed on-site for activity to verify it meets required NRC discharge criteria. A thirty day composite of these daily samples is analyzed off-site by a contracted environmental radiological laboratory for Gross Alpha, Gross Beta, and Isotopic Uranium content. These results are used to demonstrate compliance with NRC requirements.

# **RAI 5 (2 & 3) Response**

As previously noted in Section 5.0 of the Environmental report:

The liquid effluent is tested with the required frequencies to demonstrate continuous compliance for the following parameters: pH, Fluoride, Ammonia, Dissolved Oxygen, BOD5, Total Suspended Solids, Phosphorus, Fecal Coliform, and Chlorine. The plant routinely complies with NPDES permit liquid effluent discharge limitations. A new permit was negotiated with SC-DHEC effective July 1, 2004. The regulatory compliance history is summarized in Table 1.1 and minimal documented permit exceedances are noted for the period 1995-2004.

Table 1.13 summarizes typical liquid effluent discharges for noted parameters in calendar year 2003 as part of information supplied in preparation for renewal of the NPDES Permit.

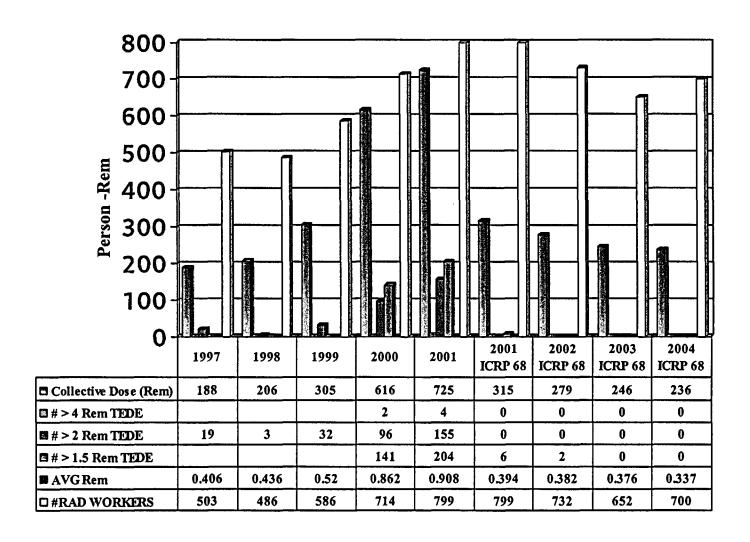
All other permit required chemical and NPDES results are within permit mass and concentration limitations (i.e. less than the maximums noted in the permit compliance table) as noted in detail in Attachment 2. From this Table 1.1 it can be concluded that Westinghouse maintains abeyance with NPDES permit conditions. A copy of the SC-DHEC liquid effluent NPDES permit #SC0001848 is provided as Attachment I in the Environmental Report.

As a supplement to this Environmental Report information, actual records of discharges are provided for the past five years in an attachment to this RAI response submittal.

The following documents a summary of liquid effluent dose:

|      | Whole Body |
|------|------------|
|      | Dose,      |
| CY   | mrem/yr    |
| 2000 | 0.00981    |
| 2001 | 0.00499    |
| 2002 | 0.00508    |
| 2003 | 0.00431    |
| 2004 | 0.00395    |
| 2005 | 0.00202    |

Note that the liquid effluent dose is not the major pathway in individual off-site dose calculations. Approximately 99+% of the off-site dose originates from the airborne pathway.


## RAI 6 Response

The historical information related to stack discharge (air emissions) of micro curies uranium corresponds to an annual TEDE dose of less than 0.4 mREM/yr to an exposed individual living at the site boundary (using the EPA "Comply" meteorological code). Dose exposures for the last six years are detailed in the response to RAI 4 above.

Radiological Exposures to the public from CFFF operations are primarily via air emissions results which are described above. These historical results are less than the ALARA goal in NRC Regulatory Guide 8.37 and the SC-DHEC Licensing Guide, "ALARA Levels for Effluents from Materials Facilities" (10 mREM/year); less than the "dose constraint" level in 10CFR20.1101(d), and less than the investigation level in WEC procedures of 1 mREM/year. Air emissions from the CFFF are routinely monitored, the results are trended, and corrective actions are taken if necessary to ensure that emissions remain ALARA.

Figure 1 below shows the annual Columbia Site Collective Dose for all persons at the CFFF (occupational exposure) for the past several years (e.g., the sum of all TEDEs). Note that the site collective dose was 246 person-rem in 2003 compared to 279 person-rem for 2002, where both were calculated using the dose coefficients in ICRP 68. In late April 2002, the Nuclear Regulatory Commission (NRC) granted the Columbia Site authorization to use intake to dose conversion coefficients published in International Commission on Radiological Protection (ICRP) Publication No. 68. These coefficients were developed for use with a revised dosimetric model of the respiratory tract and more recent biological information related to the detriment associated with radiation exposure. In order to facilitate trend analysis, historic internal exposure CEDE data and resultant Total Effective Dose Equivalent (TEDE) values were normalized for comparison purposes. This was achieved by re-calculating the CEDE and TEDE values using the ICRP 68 dose coefficients.

FIGURE 1 - SITE COLLECTIVE TEDE (Person-Rem)



# **RAI7** Response

Westinghouse is regulated by SC-DHEC with an NPDES general permit for storm water discharges associated with industrial activity, SCR000000. Westinghouse has implemented an approved Storm Water Pollution Prevention Plan (previously described in the 6/28/06 correspondence) to assure regulatory requirements are met. No process wastes are discharged to storm drains (i.e., only non process surface water runoff).

Westinghouse performs as a minimum monthly grab sample checks at the composite "Road Storm Drain (001)" location adjacent to the "C" control valve. This sampling includes chemical monitoring for pH, fluoride, and ammonia. Documentation of these results for 2000-2005 are provided as an attachment to this report. Radiological monitoring is also performed on monthly composites and that data was provided in the Environmental Report in Table 1.19, Surface Water Summary.

# **RAI 8 Response**

The generation rates and site storage capacities for all types of waste managed at the CFFF are presented in the following table:

| WASTE TYPE   | GENERATION RATE      | STORAGE CAPACITY         |  |
|--------------|----------------------|--------------------------|--|
| TRU          | 0                    | 0                        |  |
| LLRW         | 15,600 cubic ft / yr | 83,000 sq.ft storage pad |  |
| Mixed LLRW   | 0                    | 0                        |  |
| Hazardous    | 40,000 lbs./yr       | 375 sq. ft storage pad*  |  |
| Nonhazardous |                      |                          |  |
| Liquid       | 12,000 lbs./yr       | 375 sq. ft storage pad*  |  |
| Solid A**    | 3,000 lbs./yr        | 375 sq. ft storage pad*  |  |
| Solid B**    | 610 tons/yr          | NA – contract service    |  |

\* Note1: There is one 375 sq. ft storage pad that is shared.

\*\* Note 2: Nonhazardous Solid Waste A consists of items such as batteries, computers, oil filters, rags, etc.

Nonhazardous Solid Waste B consists of general industrial trash, waste generated from office areas, lunch rooms, etc.

## **RAI 9 Response**

An original ammonia groundwater contamination event was noted in 1980 involving contamination south-southwest of the facility as a result of leaks at waste treatment and product storage. The effects of the ammonia contamination at the initial most elevated location W-7 appear to have been corrected from a concentration of 1000 mg/l to current levels of approximately 55 mg/l by remedial actions and attenuation of the source.

A second groundwater contamination event was noted at the site following performance of an EPA site screening inspection at the facility in February 1989. Following this screening, a report was issued in July 1989 indicating that organic compounds were detected in the groundwater. Westinghouse confirmed in 1993 that chlorinated VOCs (including perchloroethylene and PCE degradation products) were detected in the groundwater and performed a detailed site inspection assessment in 1994 documenting VOC contamination west southwest of the plant extending 1000 feet from the old oil house to Sunset Lake. The perchloroethlyene contamination was estimated to have occurred due to temporary storage of leaking drums outside the oil house prior to passage of regulations requiring more prescriptive methods of handling hazardous materials and waste.

After contracting an environmental hydrogeological consultant firm to review the problem and assist with alternatives, Westinghouse reviewed the event with SC-DHEC and voluntarily installed a groundwater remediation system consisting of air sparging and soil vapor extraction in 1998 as a preventive barrier to prevent VOCs (perchloroethylene and degradation products) from reaching the deeper groundwater aquifers and surface water, i.e., Sunset Lake. The objective of this approach is to contain the plume and prevent further migration. The VOCs will be vaporized into the air. Operation of this system was voluntarily agreed to by Westinghouse and not initiated as a result of SC-DHEC order.

Initially wells were analyzed to contain approximately 0-3000 ug/l VOCS (1995-98). The maximum noted in the 2004 report was 569 ug/l. Processes have been implemented to assure that raw materials or waste VOC containing materials do not leak or contaminate groundwater. Based on data review, the above efforts appear to have been successful in containing the VOC plume and preventing additional contamination.

Air sparging involves pressurizing a well to introduce air below the water table to promote volatilization and biodegradation. Soil vapor extraction involves withdrawal of air under negative pressure from the vadose zone. When coupled with air sparging, soil vapor extraction expedites the volatilization of organic compounds to the atmosphere.

Westinghouse has continued with implementation of the chlorinated solvent remediation project by assuring continuous operation of the air sparge/soil vapor extraction system since its installation. This process along with elimination of new source term spills has effectively operated to remove and attenuate VOCs and perchloroethylene contamination from the shallow surficial aquifer southwest of the oil house. Also, this process helps insure against migration and contamination of site surface water

Well water analysis is required as an NRC license commitment on ten surficial aquifer wells. A third investigation was noted in 1998 related to three identified NRC well sampling sites exceeding 50 pCi/l Gross Beta investigation limit (Well7, Well 32, and Well 13). Corrective actions implemented at the cylinder recertification building and hydrostatic test operation in 1998 appear to have been effective in eliminating the source

of elevated beta activity. Also, alarms have been installed on T-1405 to minimize overflow potential.

Westinghouse also samples 15 wells for chemicals for SC-DHEC as required by the NPDES permit.

As an attachment to this report, summary data is provided from the consultant 1995 groundwater testing report summary and recent summary groundwater reports sent to SC-DHEC.

# **RAI 10 Response**

During the investigation to detect groundwater contamination, multiple soil geoprobe pentrations were completed in the locations near the (old oil house) estimated to have been effected by the past spills of chlorinated solvents. Soil samples were taken at depths from 3 to 11 feet. One sample was noted to contain Total VOC's equal to 4.5 mg/kg; and nineteen other samples indicated Total VOC's less than 0.3 mg/kg. A summary and a map documenting the soil sampling data are provided as an attachment to this report.

No management program was necessary specifically to manage the soil. Programs were implemented to manage the groundwater in the shallow surficial aquifer beneath the soil.

The soil impacted by chlorinated solvent contamination would be leached by rainwater, the surface aquifer, and then be attenuated by reaction with soil bacteria. No requirements were established by SC-DHEC to remove soil at the low documented levels of contamination.

The routine groundwater sampling program and data review would initiate additional sampling if increased contaminants were noted.

# **RAI 11 Response**

- (2) The information provided in the ER should have stated ".... approximately 3,975,793 gallons/month."
- (1) The WEC CFFF is permitted within Watershed 03050110-010, which is located in Richland, Lexington, and Calhoun Counties and consists primarily of the Congaree River and its tributaries from its origin to Cedar Creek. The watershed occupies 140,459 acres of the Sandhills and Upper Coastal Plain regions of South Carolina. Land use/land cover in the watershed includes: 54.2% forested land, 21.8% forested wetland (swamp), 11.9% agricultural land, 7.4% urban land, 2.3% water, 2.0% barren land, and 0.4% nonforested wetland (marsh). The Congaree River originates with the confluence of the Saluda River Basin and the Broad River Basin in the City of Columbia. There are a total of 269.7 stream miles and 643.2 acres of lake waters in this watershed.

## Active NPDES Facilities in this watershed and information are listed below:

RECEIVING STREAM NPDES# FACILITY NAME TYPE PERMITTED FLOW @ PIPE (MGD) COMMENT

CONGAREE RIVER SCG730263
MARTIN MARIETTA AGGREGATES/CAYCE QUARRY MINOR INDUSTRIAL PIPE #: 01A-01C, 02A-02C FLOW: M/R

CONGAREE RIVER SC0001333 VORIDIAN MAJOR INDUSTRIAL PIPE #: 001 FLOW: 100.82

CONGAREE RIVER SC0001848
WESTINGHOUSE ELECTRIC LLC/COLUMBIA MAJOR INDUSTRIAL
PIPE #: 001 FLOW: 0.130

CONGAREE RIVER SC0002062 SCE&G/COLUMBIA HYDRO PLANT MINOR INDUSTRIAL PIPE #: 001 FLOW: 0.067

CONGAREE RIVER SC0020940 CITY OF COLUMBIA/METRO PLANT MAJOR DOMESTIC PIPE #: 001 FLOW: 60.00

CONGAREE RIVER SC0024147 CITY OF CAYCE WWTP MAJOR DOMESTIC PIPE #: 001 FLOW: 12.0 PIPE #: 001 FLOW: 16.0, 24.0 PROPOSED

CONGAREE RIVER SC0033367 DEVRO INC./CORIA DIV. MINOR INDUSTRIAL PIPE #: 001 FLOW: 0.4

EAST RICHLAND COUNTY PSD/GILLS CK PLT MAJOR DOMESTIC PIPE #: 001 FLOW: 10.5 TIER I PIPE #: 001 FLOW: 13.0 TIER II PIPE #: 001 FLOW: 16.0 TIER III

**CONGAREE RIVER SC0038865** 

CONGAREE RIVER SCG641005 CITY OF WEST COLUMBIA/WTP MINOR DOMESTIC PIPE #: 001, 002 FLOW: M/R

CONGAREE RIVER SC0041386 SC DEPT. AGRIC./CALIBRATION STATION MINOR INDUSTRIAL PIPE #: 001, 002 FLOW: M/R

DRY CREEK SC0031178 BROOKFOREST MOBILE HOME ESTATES MINOR DOMESTIC PIPE #: 001 FLOW: 0.027

DRY CREEK TRIBUTARY SC0030988 BELLE MEADE SD MINOR DOMESTIC PIPE #: 001 FLOW: 0.08

DRY CREEK TRIBUTARY SC0031402 PINEY GROVE UTILITIES/LLOYDWOOD SD MINOR DOMESTIC PIPE #: 001 FLOW: 0.1548 ROCKY BRANCH SCG730054 VULCAN CONSTR. MATERIALS CO./COLA QUARRY MINOR INDUSTRIAL PIPE #: 01A-01C, 02A-02C FLOW: M/R

TOMS BRANCH SC0031321 TCH PROPERTIES LLC MINOR DOMESTIC PIPE #: 001 FLOW: 0.038

TOMS BRANCH SC0033685
ROLLING MEADOWS MHP/HERITAGE MINOR DOMESTIC
PIPE #: 001 FLOW: 0.0715

SAVANY HUNT CREEK SC0040339 SC DEPT OF TRANS./I-26 REST AREA MINOR DOMESTIC PIPE #: 001 FLOW: 0.06 PIPE #: 001 FLOW: 0.10, 0.25, 0.35, 0.50 PROPOSED

#### **Growth Potential**

There is an overall high potential for growth in this watershed, which contains a portion of the City of Columbia. There is a low to moderate potential for residential and industrial growth in the Olympia area of the City of Columbia, and high growth and development for the Congaree Vista in the downtown area. The Three Rivers Greenway will increase recreational use in this area. Growth is also projected along the I-77 beltway around the city. The Olympia and Bluff Road areas contain heavy industrial development. Only the upper portion of the watershed, near the City of Columbia, has available water and sewer service. The City of Columbia is installing an effluent diffuser in the Congaree River to improve dilution of the treated effluent. The Cities of West Columbia and Cayce are also located in this watershed. There are plans to extend water and sewer facilities capable of handling residential and industrial development within the next five to ten years. The area around Silver Lake is expected to undergo substantial residential and industrial development. The area south of the City of Cayce, along I-26 and U.S. 321, and the Bluff Road/Shop Road area in Columbia are expected to experience heavy growth. The area along U.S. 176 and U.S. 21 should experience moderate growth, primarily industrial.

Additional information is available at the following web address: <a href="http://www.scdhec.gov/eqc/water/shed/congaree.html">http://www.scdhec.gov/eqc/water/shed/congaree.html</a>

# **RAI 12 Response**

The below information is the conclusion of a Population Change and Development Activity report prepared by the Central Midlands Council of Governments in December of 2005 and provides an informational basis for the previous Westinghouse response.

"Since the 2000 U.S. Census, the Central Midlands region of South Carolina has seen notable increases in its population and housing stock, as well as in its commercial and industrial sectors. A significant portion of the increases in population and housing has occurred in two areas of the region: around the Town of Lexington and in Northeast Richland County. At the same time, there are indications that population growth is

occurring beyond these core areas, towards southern and western Lexington County, as well as into the southern and eastern portions of both Newberry and Fairfield Counties. Commercial activity grew the most within the center of the region, with Columbia as the core, extending north to Irmo, west to the Town of Lexington and northeast to Kershaw County, along US-1 and I-20. Industrial growth occurred not only in Lexington County, between West Columbia and the Town of Lexington, but also to the north, in Newberry and Fairfield Counties. In all cases, it was located near interstates 26, 20 and 77.

The next five years should see further enhancements of these trends, with strong population and new housing growth in the same core areas of the region, but also an increase in population and new housing on the outer edges of Lexington, Newberry and Fairfield Counties. Commercial activity will be strongest within the center of the region, from the Town of Lexington, through Columbia, out to Kershaw County, but will also begin to follow population growth occurring in western and southern Lexington County, as well as in southern and eastern Newberry and Fairfield Counties. Industrial growth is expected to continue around the different interstate highways within the region – near I-26 in Newberry County, I-20 in Lexington County, and I-77 in Richland and Fairfield Counties."

The full report is available at the following web address: http://www.centralmidlands.org/pdf/2000-04%20Mid-Census%20Review.pdf.

#### **RAI 13 Response**

The license application submitted in the Westinghouse July 28, 2006 correspondence addresses the 10CFR70 required attributes for change control at the CFFF. The Conduct of Operations Chapter 3 includes all the management measures necessary for a comprehensive change control process. This includes Configuration Management Section 3.1 (focus on physical attributes), Procedures, Training and Qualification (operations focus), and describes the environmental regulatory review and other management measures, (e.g., Quality Assurance, Maintenance, etc.) which ensure the review process is effective in addressing environmental impacts. The implementing procedures used at the CFFF must address not only those activities regulated by the NRC, but must address also the requirements of other governing regulations and regulatory agencies, as well as corporate policies and procedures.

RA-104 is the primary procedure used by the regulatory staff in the review of changes. The purpose of this procedure is to establish an integrated procedure for providing the radiation safety, environmental protection, nuclear criticality safety, safeguards, fire safety, chemical safety, and other health and safety criteria associated with proposed or requested modifications of, or additions to, existing hazardous material handling and storage systems, hazardous equipment, uranium processing and associated facilities and operations.

The scope of this procedure is: "All applicable plant operations shall be conducted in accordance with technically sound (ALARA) requirements for protection against health and safety hazards; and, shall be performed in accordance with NRC, SC-DHEC, and other applicable rules and regulations. Proposed modifications of, or additions to, existing structures, systems, and components with health, safety, or environmental protection significance shall be reviewed and approved by Environment, Health & Safety (EH&S) prior to implementation."

The specific functions assigned to EH&S is to "Assure that all applicable TAF-500-1 Configuration Control Changes are reviewed for Radiation Safety, Environmental Protection, Nuclear Criticality Safety, Safeguards, Fire Safety, Chemical Safety, and other Health and Safety needs; and approved in accordance with this procedure prior to implementation." EH&S personnel use the RAF-104-5, Environmental Protection Guidelines and Check List form as a checklist for internal regulatory review to ensure that all environmental criteria are considered during the review.

CA-002, Columbia Plant Procedure System, addresses other "Operational" aspects including operational activities with the potential environmental impact. The purpose of this procedure is to: 1) establish Columbia Plant guidelines for a standardized procedure system, and 2) define the responsibilities for the preparation, approval, distribution, revision, control, and acknowledgment of Controlled Documents.

The Columbia Plant procedure system is an extension of applicable Westinghouse Electric Company, Nuclear Fuel, (Level 1 and 2) policy and procedures, and provides additional plant-wide administrative and operating procedures (Level 3) necessary to meet corporate, regulatory, and customer requirements. This procedure describes the development and maintenance of plant administrative, operating, and departmental operating procedures, and mandates the following:

"Any procedure that contains industrial, fire, chemical, radiation, environmental or criticality safety or safeguards information must be reviewed and approved by appropriate Criticality Safety Engineer, Radiation & Environmental Safety Engineer, Chemical & Fire Safety Engineer and Safeguards Engineer."

The Westinghouse CFFF change control program is comprehensive and ensures the potential environmental impacts from changes to facilities and operations are reviewed and approved by the appropriate EH&S disciplines, including the Environmental Safety Engineer.

## **RAI 14 Response**

Westinghouse was approached by SCANA/SCE&G in 2003 to consider purchase of property to locate a new commercial substation on a small tract of land (6.89 acres) northwest of the facility outside the controlled access area to distribute power in

southeastern Richland County. The addition of these facilities and associated transmission lines will improve reliability of electric service to Westinghouse and other customers in this area. A small existing SCE&G transformer had been located on site to bring power to the plant preceding the request. SCE&G operations and maintenance crews entered the site to maintain this equipment. After construction, it is estimated that a SCE&G/SCANA employee will be on site less than 10 hours per month.

A Phase I Environmental Assessment Report was prepared by SCANA. The current and past use of the property had been noted for use in silviculture purposes (softwood-pine). A copy of the SCANA Phase I report is provided as an attachment to this response. The adjacent properties near this approximate 7 acre plot are owned by Westinghouse and are undeveloped with the exception of the gravel road bordering the property and a walking trail to the east.

After evaluation, Westinghouse determined that the proposed substation property location was remote (i.e., outside the restricted area and outside any sites of environmental concern) to the plant facility and that the sale and impact of constructing and operating an electrical substation which is not routinely staffed with personnel would not substantially impact or interfere with the Westinghouse site operation. Likewise, Westinghouse operations should not impact the substation. The substations are currently under construction by SCANA and will be ready for service approximately May 2007.

# Attachments

| 1. RAI-2  | SC-DHEC Air Permit             |
|-----------|--------------------------------|
| 2. RAI-5  | NPDES Summary Data             |
| 3. RAI-7  | Road Surface Water Data        |
| 4. RAI-9  | Groundwater Well Sampling Data |
| 5. RAI-10 | Soil Geoprobe Sampling Data    |
| 6 RAI-14  | SCANA Phase I Report           |



2600 Bull Street Columbia, SC 29201-1708

# OFFICE OF ENVIRONMENTAL QUALITY CONTROL BUREAU OF AIR QUALITY OPERATING PERMIT

Westinghouse Electric Company 5801 Bluff Road Columbia, South Carolina 29204

Pursuant to the provisions of the *Pollution Control Act*, Sections 48-1-50(5) and 48-1-110(a), 1976 Code of Laws of South Carolina and the South Carolina Air Quality Control Regulation 62.1, Section II(B), the Bureau of Air Quality authorizes the operation of the equipment specified herein in accordance with the plans, specifications and other information submitted in the construction permit application. This permit is subject to all conditions and operating limitations contained herein.

| P.D | Equipment Description                                                                    | Control Device (control efficiency)                                                            |
|-----|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 01  | A 2.51 million Btu/hr natural gas fired 500 lb/hr industrial incinerator.                | 1995                                                                                           |
| 02  | A 14.6 million Btu/hr natural gas/No. 2 fuel oil fired Boiler.                           |                                                                                                |
| 03  | A 14.6 million Btu/hr natural gas/No. 2 fuel oil fired Boiler                            |                                                                                                |
| 04  | A 8.3 million Btu/hr natural gas/No. 2 fuel oil fired Boiler                             |                                                                                                |
| 05* | VOID - A 200 kW Emergency Generator; No. 2 fuel oil                                      | **                                                                                             |
| 06* | VOID - A 250 kW Emergency Generator; No. 2 fuel oil                                      |                                                                                                |
| 07* | VOID - A 500 kW Emergency Generator; No. 2 fuel oil                                      |                                                                                                |
| 08* | VOID - A 500 kW Emergency Generator; No. 2 fuel oil                                      | · <b></b>                                                                                      |
| 09  | Calciner #1: A 0.57 million Btu/hr natural gas fired North American Model NA-4424-0      |                                                                                                |
| 10  | Calciner #2: A 0.57 million Btu/hr natural gas fired North American Model NA-4424-0      |                                                                                                |
| 11  | Calciner #3: A 0.57 million Btu/hr natural gas fired North "American Model NA-4424-0     | -                                                                                              |
| 12  | Calciner #4: A 0.57 million Btu/hr natural gas fired North American Model NA-4424-0      | ••                                                                                             |
| 13  | Calciner #5: A 0.57 million Btu/hr natural gas fired North American Model NA-4424-0      |                                                                                                |
| 14  | Conversion System #1                                                                     | Ammonium Diuranate High Energy Venturi Cyclone (Heil 724); HEPA filters                        |
| 15, | ADU Scrap Recovery & ADU On-Line Scrubber                                                | KCH-Hedron V packed tower scrubber and                                                         |
| 16  | S-1030 System (A & B)                                                                    | HEPA filter (for NH3OH and H2O droplets)                                                       |
| 17  | Ammonia Fume Scrubber                                                                    | KCH-Phaser IV packed tower scrubber with<br>HEPA filters                                       |
| 18  | ADU/Waste Recovery Waterglass Scrubber Exhaust                                           | KCH Hedron - 5-5 Packed tower scrubber                                                         |
| 19  | Plating Room Scrubber Exhaust                                                            | Heil 760 Packed Horizontal Baffle Scrubber                                                     |
| 20  | Uranium Recovery/Solvent Extraction                                                      | Harrington Horizontal Packed Baffle Venturi<br>scrubber with Cyclone Scrubber; HEPA<br>filters |
| 21  | Vapor degreasing operation; batch vapor cleaning machine; control devices; NESHAP - VOID | -                                                                                              |

<sup>\*</sup>These sources have been exempted. As per a conversation with the facility February 2003, these emergency generators are used only for emergency purposes.

PERMIT NUMBER: 1900-0050 DATE OF ISSUE: May 12, 2003

**EXPIRES ON THE LAST DAY OF:** April 2008 **PLANT LOCATION:** 5801 Bluff Road - Columbia

SIC CODE: 2819

SOUTH CAROLINA DEPARTMENT OF HEALTH AND ENVIRONMENTAL CONTROL

# I. STANDARD CONDITIONS

- A. The permit to operate may be renewed upon evidence of satisfactory operational experience during the prior operating period.
- B. This permit expressly incorporates all the provisions of South Carolina Department of Health and Environmental Control Regulation 61-62.1, Section II(C).

# II. SPECIAL CONDITIONS

# A. EMISSION LIMITATIONS

Air pollutant emissions shall not exceed the following:

| ħ             | Pollutant/<br>Standard | Limit                            | Reference: | Regulation                                          | State<br>Only |
|---------------|------------------------|----------------------------------|------------|-----------------------------------------------------|---------------|
| 01            | PM                     | 0.5 lb/million Btu<br>heat input | 5          | SC Regulation 62.1-62.5,<br>Standard 3, Section III | No            |
| 01            | Opacity                | 20%                              | 9          | SC Regulation 62.1-62.5,<br>Standard 3, Section III | No            |
| 02, 03,<br>04 | Opacity                | 20%                              | 9          | SC Regulation 62.1-62.5,<br>Standard 1, Section I   | No            |
| 02, 03,<br>04 | PM                     | 0.6 lb/million Btu<br>heat input | 5          | SC Regulation 62.1-62.5,<br>Standard 1, Section II  | No            |
| 02, 03,<br>04 | SO2                    | 3.5 lb/million Btu<br>heat input | 6          | SC Regulation 62.1-62.5,<br>Standard 1, Section III | No            |
| 09-14         | Opacity                | 40%                              | 9          | SC Regulation 62.1-62.5,<br>Standard 4, Section IX  | No            |
| 15-20         | Opacity                | 20%                              | 9          | SC Regulation 62.1-62.5,<br>Standard 4, Section IX  | No            |

<sup>\*</sup>As Approved By BAQ N/A = Not Applicable

The above emission limitations are based on the operation at rated capacity. Operation at other than rated capacity must meet the emission limits specified in the applicable regulations based on that operating rate. All test methods must be the most recent revisions that are published in the *Code of Federal Regulations* (40 CFR 60 Appendix A) as in effect on the date of this permit issuance.

# B. CONTINUOUS MONITORING REQUIREMENTS

| D   | Pollutant .c | Averaging Time |
|-----|--------------|----------------|
| N/A | N/A          | N/A            |

# C. SOURCE TEST SCHEDULE

|     | Pollutant . | Frequency | Method 5 |
|-----|-------------|-----------|----------|
| N/A | N/A         | N/A       | N/A      |

Westinghouse Electric Company PERMIT NUMBER: 1900-0050 DATE OF ISSUE: May 12, 2003 PAGE 3 OF 4

# D. ADDITIONAL CONDITIONS

| Condition<br>Number | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.                  | (Facility wide) The permittee shall pay fees in accordance with SC Regulation 61-30, SC Environmental Protection Fees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.                  | (Facility wide) In accordance with SC Regulation 61-62.1 Section II(C)(3), for all sources not required to have continuous emissions monitors, in the event of any malfunction of air pollution control equipment or system, process upset or other equipment failure which results in discharges of air contaminants lasting for one hour or more and which are greater than those discharges described for normal operation in the permit application shall be reported to the local Environmental Quality Control (EQC) District office within twenty-four (24) hours after the beginning of the occurrence. The permittee shall also submit a written report within thirty (30) days of the occurrence. This report shall be submitted to the Manager of the Technical Management Section, Bureau of Air Quality (BAQ). The report shall contain as a minimum, the following: the identity of the emission unit and associated equipment where excess emissions occurred, the magnitude of excess emissions, the time and duration of excess emissions, the steps taken to remedy the malfunction and to prevent a recurrence, documentation that control equipment and processes were at all times maintained and operated, to the maximum extent practicable, in a manner that was consistent with good practice for minimizing emissions. Such a report shall in no way serve to excuse, otherwise justify, or in any manner affect any potential liability or enforcement action resulting from the occurrence. |
| 3.                  | (Facility wide) Air dispersion modeling (or other method) has demonstrated that this facility's operation will not interfere with the attainment and maintenance of any state or federal standard. Any changes in the parameters used in the air dispersion modeling may require a review by the facility to determine continuing compliance with these standards. These potential changes include any decrease in stack height, decrease in stack velocity, increase in stack diameter, decrease in stack exit temperature, increase in building height or building additions, increase in emission rates, decrease in distance between stack and property line, changes in vertical stack orientation, and installation of a rain cap that impedes vertical flow. Parameters that are not required in the determination will not invalidate the demonstration if they are modified. The emission rates used in the determination are listed in Attachment A of this permit. Higher emission rates may be administratively incorporated into Attachment A of this permit provided a demonstration using these higher emission rates shows the attainment and maintenance of any state or federal standard or with any other applicable requirement. Variations from the input parameters in the demonstration shall not constitute a violation unless the maximum allowable ambient concentrations identified in the standard are exceeded.                                                                            |
|                     | The owner/operator shall maintain this facility in compliance with the pollutant limitations in Section II(A) - Emissions Limitations, and/or as listed in Attachment A of this operating permit, whichever is more restrictive. This is a State Only enforceable requirement. Should the facility wish to increase the emission rates listed in Attachment A, it may do so by the administrative process specified in this permit condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.                  | (Facility wide) These conditions shall not supersede any State or Federal requirements such as National Emission Standards for Hazardous Air Pollutants, unless these conditions would impose a more restrictive limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5.                  | (ID 02, 03 and 04) In accordance with South Carolina Regulation 61-62.5, Standard 1 - EMISSIONS FROM FUEL BURNING OPERATIONS, Section II -PARTICULATE MATTER EMISSIONS, the allowable discharge of particulate matter resulting from the fuel burning operations is 0.6 lbs/10 <sup>6</sup> BTU input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6.                  | (ID 02, 03, and 04) In accordance with South Carolina Regulation 61-62.5, Standard 1 - EMISSIONS FROM FUEL BURNING OPERATIONS, Section III -SULFUR DIOXIDE EMISSIONS, the maximum allowable discharge of SO <sub>2</sub> resulting from the fuel burning operations is 3.5 lbs/10 <sup>6</sup> BTU input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7.                  | (ID 02, 03, 04) Are permitted to burn only natural gas and NO. 2 fuel oil (0.5% sulfur content by weight) as fuel. The use of any other substances as fuel is prohibited without prior written approval from the Bureau of Air Quality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8.                  | (ID 09-14) Are permitted to burn only natural gas as fuel. The use of any other substances as fuel is prohibited without prior written approval from the Bureau of Air Quality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Condition<br>Number | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.                  | (ID 02, 03, 04) In accordance with SC Regulation 61-62.5, Standard No. 1, Emissions from Fuel Burning Operations. ID 02, 03 and 04 shall not discharge into the ambient air smoke which exceeds an opacity of 20%. The twenty (20) percent opacity limit may be exceeded for sootblowing, but may not be exceeded for more than six (6) minutes in a one hour period nor be exceeded for more than a total of twenty-four (24) minutes in a twenty-four (24) hour period. Emissions caused by sootblowing shall not exceed sixty (60) percent opacity. The opacity standards set forth above do not apply during startup or shutdown. The owner/operator shall, to the extent practicable, maintain and operate any source including associated air pollution control equipment in a manner consistent with good air pollution control practices for minimizing emissions. The owner/operator shall, for a period of at least five (5) years maintain a log of the time, magnitude, duration and any other pertinent information to determine periods of startup and shutdown and make these records available to a Department representative upon request. |
| 10.                 | (ID 09-14) In accordance with SC Regulation 61-62.5, Standard No. 4 - Emissions from Process Industries, Section IX - Visible Emissions (Where Not Specified Elsewhere), where construction or modification began on or before December 31, 1985, emissions (including fugitive emissions) shall not exhibit an opacity greater than 40%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11.                 | (ID 15-20) In accordance with SC Regulation 61-62.5, Standard No. 4 - Emissions from Process Industries, Section IX - Visible Emissions (Where Not Specified Elsewhere), where construction or modification began after December 31, 1985, emissions (including fugitive emissions) shall not exhibit an opacity greater than 20%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12.                 | (ID 01) As specified in SC Regulation 61-62.5, Standard 3, Section IX all incinerator operators shall be trained based on criteria contained in South Carolina Regulations 61-62.5, Standard 3, Section IX, Part C as to proper operating practices and procedures of the incinerator. The content of the above referenced training program, in addition to a list of trained personnel, shall be submitted to the Manager of the Technical Management Section, no later than thirty (30) days after the start up of the incinerator. The incinerator shall not be operated without a trained operator on site, who has a certificate verifying satisfactory completion of the approved training program.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# E. Exempt Sources

| Equip ID. | Exempt Source Description (Exemption Date)                               | " Básis de  |
|-----------|--------------------------------------------------------------------------|-------------------------------------------------|
| A*        | A 200 kW Emergency Generator; No. 2 fuel oil, installed<br>1975 (4/4/03) | SC Regulation 62.1, Section II, Part<br>F(2)(e) |
| B*        | A 250 kW Emergency Generator; No. 2 fuel oil, installed<br>1975 (4/4/03) | SC Regulation 62.1, Section II, Part F(2)(e)    |
| C*        | A 500 kW Emergency Generator; No. 2 fuel oil, installed<br>1981 (4/4/03) | SC Regulation 62.1, Section II, Part F(2)(e)    |
| D*        | A 500 kW Emergency Generator; No. 2 fuel oil, installed<br>1981 (4/4/03) | SC Regulation 62.1, Section II, Part<br>F(2)(e) |

<sup>\*</sup>These sources used to be listed as IDs 05-08.

No deviation from the plans and specifications submitted with your application or the conditions specified herein is permitted, unless authorized in writing by the Bureau of Air Quality. The owner/operator is responsible for satisfactory compliance with all Air Pollution Regulations and Standards.

Carl W. Richardson, P.E., Director Engineering Services Division Bureau of Air Quality

7

# **ATTACHMENT A**

# Modeled Emission Rates Westinghouse Electric Company 1900-0050 PAGE 1 OF 1

| AMBIENT ATR QUALITY STANDARDS - STANDARD 2 |        |                  |                 |       |                                                    |
|--------------------------------------------|--------|------------------|-----------------|-------|----------------------------------------------------|
| ·                                          |        |                  | Emission Rates  |       | a lister the section of the Section of the section |
| STACK                                      | TSP    | PM <sub>10</sub> | SO <sub>1</sub> | NOx   | co                                                 |
| Boiler #1                                  | 0.34   | 0.25             | 7.40            | 2.09  | 1.2                                                |
| Boiler #2                                  | 0.34   | 0.25             | 7.40            | 2.09  | 1.2                                                |
| Boiler #3                                  | 0.20   | 0.14             | 4.21            | 1.19  | 0.68                                               |
| Incinerator                                | 0.175  | 0.118            | 0.625           | 0.75  | 2.50                                               |
| Calciner Exhaust #1                        | 0.0042 | 0.0042           | 0.0003          | 0.057 | 0.047                                              |
| Calciner Exhaust #2                        | 0.0042 | 0.0042           | 0.0003          | 0.057 | 0.047                                              |
| Calciner Exhaust #3                        | 0.0042 | 0.0042           | 0.0003          | 0.057 | 0.047                                              |
| Calciner Exhaust #4                        | 0.0042 | 0.0042           | 0.0003          | 0.057 | 0.047                                              |
| Calciner Exhaust #5                        | 0.0042 | 0.0042           | 0.0003          | 0.057 | 0.047                                              |

| TOX           | IC ATR POLLUTANTS MODELED : STANDARD 8 |
|---------------|----------------------------------------|
|               | Modeled Emission Rates (lbs/hr)        |
| STACK         | Nitric Acid                            |
| ·             | 769-73-72                              |
| Facility Wide | 0.77                                   |

| NPDE       | S Chemical                          | Summar   | у     | 2005                     |                       |      |       |       |       |       |      |                |             |
|------------|-------------------------------------|----------|-------|--------------------------|-----------------------|------|-------|-------|-------|-------|------|----------------|-------------|
|            | Flow                                | Flow max | NH3   | max                      | F                     |      | BOD5  | max   | TSS   | max   |      |                | ,mg/l       |
| Jan        | 110.5                               | 149.4    | 18.2  | 42.5                     | 2.1                   | 3.7  | 4.2   | 6     | 9.2   | 11.45 | 0.2  | 2              | 1           |
| Feb        | 100.3                               | 172      | 39.8  | 73.97                    | 2.06                  | 4.3  | 3.15  | 5.84  | 6.59  | 12.88 | 0.5  | 2              | 0.9         |
| Mar        | 106.26                              | 136.8    | 38.6  | 56.68                    | 2.25                  | 3.27 | 7.2   | 15.48 | 18.65 | 28.78 | 0.1  | 2              | 1.2         |
| Apr        | 99.85                               | 175.8    | 33.9  | 52.34                    | 4.37                  | 9.18 | 12.1  | 17.4  | 10.74 | 20    | 0.1  | 2              | 1.8         |
| May        | 92                                  | 120.2    | 19    | 40.49                    | 2.47                  | 7.91 | 4.16  | 6.37  | 10.2  | 15.68 | 0.3  | 2              | 1.2         |
| June       | 103.11                              | 159.93   | 6.32  | 12.63                    | 2.85                  | 3.92 | 7.5   | 11.18 | 16.16 | 26.08 | 0.1  | 2              | 1.4         |
| Jul        | 116.41                              | 155.68   | 8.45  | 19.25                    | 3.7                   | 9.61 | 16.44 | 27.74 | 14.54 | 19.2  | 0.35 | 2              | 1.5         |
| Aug        | 116.16                              | 157.28   | 11.9  | 27.22                    | 3.7                   | 6.4  | 12.2  | 18.79 | 17.6  | 27.33 | 0.09 | 6              | 1.1         |
| Sept       | 114.2                               | 151.6    | 11.2  | 15.35                    | 2.76                  | 4.07 | 17.48 | 28.94 | 23.32 | 57.88 | 0.09 | 2              | 1.14        |
| Oct        | 99.37                               | 145.38   | 17.57 | 30                       | 2.55                  | 4.7  | 6.7   | 8.68  | 6.96  | 8.43  | 0.14 | 2              | 1.8         |
| Nov        | 102.61                              | 124.57   | 21.03 | 38.84                    | 2.21                  | 3.85 | 3.42  | 8.1   | 5.56  | 7.39  | 0.1  | 2              | 0.9         |
| Dec        | 91.13                               | 141.3    | 26.7  | 52.45                    | 2                     | 4.49 | 7.83  | 13.54 | 5.77  | 8.75  | 0.44 | 2              | 0.52        |
| AVG<br>MAX | 1251.9<br>1 <b>04.3</b> 3<br>116.41 | 149.16   | 21.06 | 461.72<br>38.48<br>73.97 | 33.02<br>2.75<br>4.37 | 5.45 | 8.53  | 14.01 | 12.11 | 20.32 | 0.21 | 2<br>2.33<br>6 | 1.21<br>1.8 |

**\** 

| NPDES      | S Chemical                  | Summary     |                        | 2004                         |                   |                               |      |       |         |         |        |                 |             |
|------------|-----------------------------|-------------|------------------------|------------------------------|-------------------|-------------------------------|------|-------|---------|---------|--------|-----------------|-------------|
|            |                             | Flow max NH |                        | nax F                        | max               |                               | BOD5 | max   | TSS     | max     |        |                 | ,mg/l       |
| Jan        | 123.9                       | 159.1       | 33.9                   | 67                           | 5.5               | 13.4                          | 6.28 | 10.8  | 3 14.3  | 28.56   | 0.11   | 2               |             |
| Feb        | 123                         | 164.1       | 39.5                   | 13                           | 8.7               | 17.4                          | 7.53 | 10.7  | 19.8    | 37.5    | 0.2    | 2               |             |
| Mar        | 120.79                      | 153         | 22.9                   | 34.8                         | 3.5               | 7                             | 7.79 | 15.1  | 13.6    | 19.88   | 0.1    | 2               |             |
| Apr        | 115.91                      | 164         | 14.8                   | 35.3                         | 2.9               | 4.63                          | 11.9 | 27.4  | 17.3    | 23.85   | 0.5    | 2               |             |
| May        | 108.72                      | 143.3       | 14.6                   | 28.96                        | 3.5               | 27.1                          | 4.87 | 10    | 20.4    | 32.2    | 0.2    | 2               |             |
| June       | 88.25                       | 163.1       | 6.1                    | 14.96                        | 2.7               | 5.11                          | 14.6 | 36.73 | 3 14.3  | 3 34    | 0.1    | 2               |             |
| Jul        | 110.4                       | 183.9       | 8.7                    | 24.1                         | 3.4               | 8.21                          | 12.8 | 14.88 | 3 11    | 15.99   | 0.1    | 2               | 2.1         |
| Aug        | 117.27                      | 188.4       | 4.9                    | 12.6                         | 3.7               | 6.77                          | 14   | 24.4  | 14.8    | 3 30.1  | 0.1    | 2               | 1.4         |
| Sept       | 125.06                      | 179.8       | 8.3                    | 14.8                         | 5.6               | 9.4                           | 13.2 | 23.99 | 9 18.3  | 3 24.47 | 7 0.1  | 37              | 1.2         |
| Oct        | 113.72                      | 159.1       | 11.4                   | 19.9                         | 3.6               | 5.9                           | 5.8  | 11.8  | 3 9.5   | 5 21.6  | 3 0.1  | 2               | 0.81        |
| Nov        | 82.59                       | 165.2       | 11.5                   | 26.18                        | 3                 | 5.7                           | 13.6 | 29.19 | 9 10.2  | 2 14.6  | 3 0.3  | 2               | 1.4         |
| Dec        | 110.35                      | 159.2       | 22.8                   | 34.59                        | 2.9               | 5.1                           | 5.9  | 10.3  | 7 8     | 9.3     | 5 0.4  | 2               | 0.01        |
| AVG<br>MAX | 1339.96<br>111.66<br>125.06 | 165.18      | 199.4<br>16.62<br>39.5 | 326.19<br><b>27.18</b><br>67 | 49<br>4.08<br>8.7 | 115.72<br>9.64<br><b>27.1</b> | 9.86 | 18.8° | 1 14.29 | 9 24.3  | 4 0.19 | 2<br>4.92<br>37 | 1.15<br>2.1 |

\*\*

| NPDE       | S Chemical Sum             |                         | 2003                    | _                       |                       |                         |                         |                         |                         |                         |                    |                |
|------------|----------------------------|-------------------------|-------------------------|-------------------------|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------|----------------|
| Jan        | Flow<br>90                 | 117.7                   | <b>H3</b> m<br>47.6     | ax F<br>72.9            | 8.3                   | ax<br>14.9              | BOD5<br>13.4            | max<br>26.2             | TSS m<br>12.7           | x Cli<br>27             | 2 FC<br>0.7        | 2              |
| Feb        | 110                        | 165.7                   | 44.9                    | 81.1                    | 7.8                   | 17.1                    | 17.3                    | 21.2                    | 8.7                     | 13.8                    | 0.2                | 2              |
| Mar        | 139.6                      | 167.8                   | 28.7                    | 43.1                    | 11.6                  | 22.7                    | 21.5                    | 31.6                    | 8.5                     | 9.2                     | 0.4                | 2              |
| apr        | 146.4                      | 187.1                   | 11.5                    | 33.2                    | 7.2                   | 12.3                    | 17.6                    | 43.4                    | 8.9                     | 12.5                    | 0.2                | 2              |
| May        | 155.3                      | 273                     | 9                       | 29.9                    | 9.7                   | 22.8                    | 21.8                    | 49.4                    | 11.8                    | 13.9                    | 0.1                | 2              |
| June       | 160.8                      | 183.5                   | 11.8                    | 16.8                    | 6.7                   | 9.9                     | 19.5                    | 33.1                    | 15.9                    | 24                      | 0.2                | 2              |
| Jul        | 150.6                      | 215.7                   | 10.6                    | 24.6                    | 10.2                  | 16.6                    | 32.2                    | 58.7                    | 7.4                     | 11.9                    | 0.1                | 2              |
| Aug        | 146.8                      | 218.2                   | 15.5                    | 41.8                    | 9.2                   | 17.2                    | 22.5                    | 35.4                    | 18.7                    | 41.9                    | 0.1                | 2              |
| Sept       | 134.7                      | 169.2                   | 18                      | 48.7                    | 9.2                   | 19                      | 23.3                    | 46.1                    | 9.8                     | 19.6                    | 0.1                | 2              |
| Oct        | 116.5                      | 164.8                   | 13.9                    | 25.7                    | 4.1                   | 8.6                     | 18.7                    | 27.7                    | 8.1                     | 12.2                    | 0.1                | 2              |
| Nov        | 82.59                      | 168.2                   | 26.59                   | 67.6                    | 2.6                   | 7.44                    | 6.27                    | 11.25                   | 4.16                    | 6.65                    | 0.1                | 2              |
| Dec        | 127.46                     | 205.2                   | 46.47                   | 74.08                   | 3.44                  | 5.35                    | 8.67                    | 16.3                    | 8.28                    | 19.17                   | 0.3                | 2              |
| AVG<br>MAX | 1560.75<br>130.30<br>160.8 | 2236.1<br>184.63<br>273 | 284.56<br>21.64<br>47.6 | 559.48<br>44.13<br>81.1 | 90.04<br>7.87<br>11.6 | 173.89<br>15.32<br>22.8 | 222.74<br>19.46<br>32.2 | 400.35<br>34.91<br>58.7 | 122.94<br>10.42<br>18.7 | 211.82<br>17.51<br>41.9 | 2.6<br>0.21<br>0.7 | 2<br>2.00<br>2 |

\*

| NPDES | Chemical Su             |                         | 2001                  |          |              |                       |              |                       |                       |             |              |
|-------|-------------------------|-------------------------|-----------------------|----------|--------------|-----------------------|--------------|-----------------------|-----------------------|-------------|--------------|
| Jan   | Flow 113.7              | Flow max<br>151.4       | NH3<br>45.2           | max F 75 | 3.8          | max<br>6.3            | BOD5<br>16.7 | max<br>36.8           | TSS C                 | 12 F<br>0.5 | C 2          |
|       |                         |                         |                       |          |              |                       |              |                       |                       |             |              |
| Feb   | 119.1                   | 167.8                   | 35.6                  | 61.8     | 6.7          | 10                    | 10.6         | 12.1                  | 5.6                   | 0.2         | 2            |
| Mar   | 137.1                   | 181.7                   | 41.2                  | 65.8     | 8.3          | 17.8                  | 23.5         | 41                    | 6.6                   | 0.1         | 2            |
| apr   | 121.9                   | 162.7                   | 20.3                  | 38.6     | 7.3          | 13.9                  | 15.8         | 28                    | 19.2                  | 0.1         | 2            |
| May   | 118.3                   | 192.1                   | 11.1                  | 23.8     | 8.1          | 22                    | 20.1         | 35.9                  | 18.7                  | 0.1         | 2            |
| June  | 136.1                   | 179.1                   | 11.4                  | 22.2     | 9            | 17.7                  | 10.5         | 16.6                  | 9.9                   | 0.1         | 2            |
| Jul   | 160.6                   | 196.3                   | 14.6                  | 24.1     | 9.8          | 18.1                  | 13.6         | 22.7                  | 13.1                  | 0.1         | 2            |
| Aug   | 131.3                   | 198.5                   | 18.8                  | 39.2     | 9.3          | 15.4                  | 24.9         | 46                    | 20.5                  | 0.3         | 2            |
| Sept  | 115.9                   | 115.9                   | 18.3                  | 35.5     | 7            | 11.8                  | 19.9         | 38.3                  | 10.3                  | 0.2         | 138          |
| Oct   | 115.3                   | 167.4                   | 19.7                  | 31.8     | 9            | 15                    | 24.9         | 36.4                  | 7.5                   | 0.5         | 2            |
| Nov   | 114.6                   | 168.1                   | 24.5                  | 40.6     | 6            | 12.3                  | 6.8          | 11.1                  | 5.8                   | 0.3         | 2            |
| Dec   | 121                     | 221.4                   | 37.5                  | 73.9     | 7.9          | 18.5                  | 18.7         | 42.5                  | 9.9                   | 0.5         | 2            |
| AVG   | 1504.9<br><b>125.41</b> | 2102.4<br><b>175.20</b> | 298.2<br><b>24.85</b> |          | 92.2<br>7.68 | 178.8<br><b>14.90</b> | 206<br>17.17 | 367.4<br><b>30.62</b> | 132.1<br><b>11.01</b> | 3           | 2            |
| MAX   | 160.6                   | 221.4                   | 45.2                  |          | 9.8          | 22                    | 24.9         | 46                    | 20.5                  | 0.25<br>0.5 | 13.33<br>138 |

\*

•

# RAI-7 Attachment

# Stormwater Monitoring 2000

| Date       | Road |      |       |      |
|------------|------|------|-------|------|
| 2/16/2000  | рΗ   | NH3  |       | F    |
| 2/23/2000  | •    | 6.2  | 1     | 0.5  |
| 3/1/2000   |      | 6.87 | 6.81  | 0.5  |
| 3/8/2000   |      | 6.57 | 1     | 0.5  |
| 3/15/2000  |      | 6.3  | 1     | 0.5  |
| 3/22/2000  |      | 6.17 | 1     | 0.5  |
| 3/29/2000  |      | 6.43 | 1     | 0.5  |
| 4/5/2000   |      | 6.41 | 1     | 0.4  |
| 5/3/2000   |      | 6.06 | 1     | 0.4  |
| 5/10/2000  |      | 6.59 | 1     | 1.81 |
| 5/17/2000  |      | 6.39 | 1     | 1.78 |
| 5/24/2000  |      | 6.58 | 1     | 2.39 |
| 5/31/2000  |      | 6.69 | 2.42  | 2.93 |
| 6/7/2000   |      | 7.09 | 10    | 2.56 |
| 6/14/2000  |      | 6.07 | 1     | 1.27 |
| 6/21/2000  |      | 6.75 | 1     | 1.93 |
| 6/28/2000  |      | 6.38 | 1.76  | 1.6  |
| 7/5/2000   |      | 6.17 | 1     | 1.35 |
| 7/12/2000  |      | 6.14 | 1.13  | 1.52 |
| 7/19/2000  |      | 6.49 | 1.24  | 1.38 |
| 7/26/2000  |      | 6.75 | 0.5   | 2.3  |
| 8/4/2000   |      | 5.98 | 1.56  | 0.5  |
| 8/9/2000   |      | 6.14 | 1     | 0.5  |
| 8/16/2000  |      | 6.18 | 1     | 0.62 |
| 8/23/2000  |      | 6.29 | 1     | 0.99 |
| 8/30/2000  |      | 7.04 | 0.06  | 1.33 |
| 9/6/2000   |      | 7.43 | 1     | 0.5  |
| 9/13/2000  |      | 5.96 | 1     | 0.5  |
| 9/20/2000  |      | 6.33 | 1     | 0.82 |
| 9/27/2000  |      | 6.24 | 1     | 0.78 |
| 10/4/2000  |      | 6.41 | 1     | 0.47 |
| 10/11/2000 |      | 7.49 | 1     | 3.62 |
| 10/18/2000 |      | 7.53 | 1     | 4.04 |
| 10/25/2000 |      | 7.17 | 1     | 3.11 |
| 11/1/2000  |      | 7.08 | 1     | 2.8  |
| 11/8/2000  |      | 7.03 | 1     | 2.01 |
| 11/15/2000 |      | 6.75 | 1     | 2.98 |
| 12/6/2000  |      | 6.09 | 1     | 0.62 |
| 12/27/2000 |      | 7.07 | 1     | 2.2  |
| 12/31/2000 |      | 6.82 | 1     | 1.86 |
| Min        |      | 6.56 | 1.43  | 1.45 |
| Avg        |      | 6.57 | 1.42  | 1.46 |
| Max        |      | 7.53 | 10.00 | 4.04 |
|            |      |      |       |      |

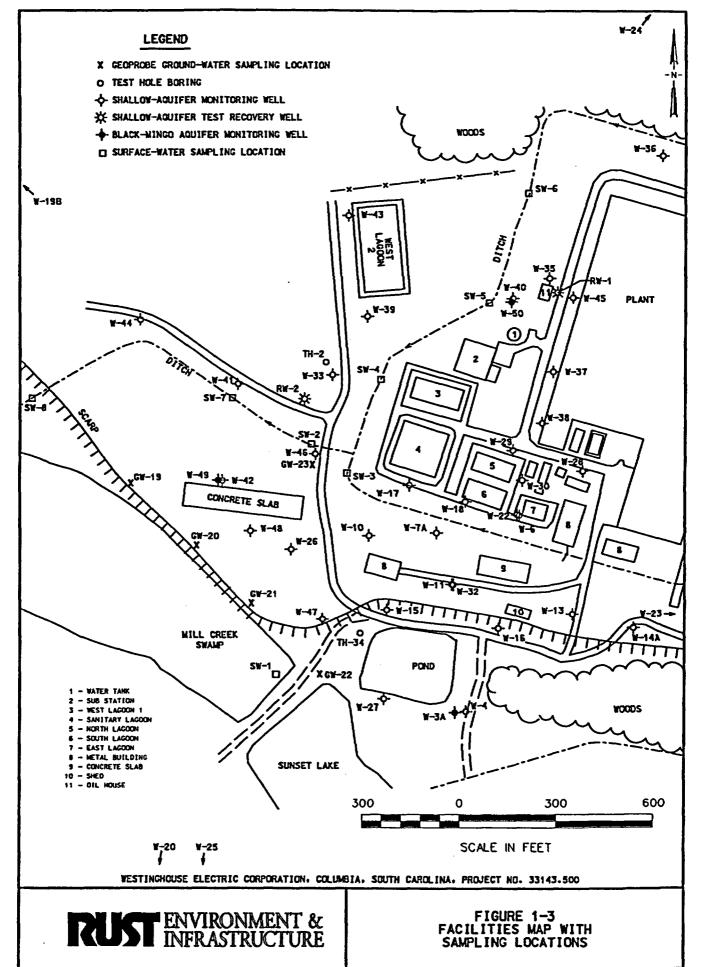
|                      | Road         |        |              |
|----------------------|--------------|--------|--------------|
| Date                 | pН           | NH3    | F            |
| 01/03/01             | 7.47         | 1.1    | 1.46         |
| 01/10/01             | 6.53         | 1      | 0.7          |
| 01/17/01             | 6.51         | 1      | 1.48         |
| 01/24/01             | 6.85         | 3      | 0.85         |
| 1/31/2001            | 6.83         | 0.19   | 2.8          |
| 02/07/01             | 6.95         |        | 1.48         |
| 02/14/01             | 6.31         | 1      | 8.0          |
| 02/21/01             | 6.5          | 1.5    | 0.86         |
| 2/28/2001            | 6.28         | 0.19   | 0.9          |
| 03/07/01             | 6.32         | 1      | 0.9          |
| 03/14/01             | 6.08         | 1      | 0.4          |
| 03/21/01             | 6.1          | 1      | 0.4          |
| 3/28/2001            | 6.9          | 1      | 0.5          |
| 04/04/01             | 6.65         | 0.19   | 8.0          |
| 4/18/2001            | 6.4          | 0.58   | 1.54         |
| 04/25/01             | 6.35         | 1      | 0.5          |
| 05/02/01             | 7.34         | 0.04   | 2.95         |
| 05/09/01             | 7.38         | 0.02   | 3.24         |
| 05/16/01             | 6.73         | 1      | 0.4          |
| 5/23/2001            | 6.79         | 0.1    | 0.56         |
| 06/01/01             | 7.11         | 1      | 0.7          |
| 06/06/01             | 6.35         | 1      | 0.33         |
| 06/13/01             | 6.88         | 1      | 0.4          |
| 06/20/01             | 7.02         | 1      | 37.1         |
| 6/27/2001            | 7.04         | 1      | 0.4          |
| 07/05/01             | 6.58         | 1      | 0.52<br>13.1 |
| 07/11/01<br>07/18/01 | 6.53<br>7.44 | 0.22   | 2.89         |
| 7/25/2001            | 6.88         | 1<br>1 | 2.09         |
| 08/01/01             | 6.88         | 1      | 1.7          |
| 08/08/01             | 7.33         | 1      | 2.76         |
| 08/15/01             | 6.65         | 1      | 2.75         |
| 08/22/01             | 6.54         | 1      | 2.55         |
| 8/29/2001            | 6.44         | 1      | 0.5          |
| 09/05/01             | 7.38         | 1      | 0.6          |
| 09/11/01             | 6.96         | 1      | 0.7          |
| 09/19/01             | 6.64         | 1      | 1.68         |
| 9/26/2001            | 7.84         | 1      | 1.85         |
| 10/03/01             | 7.22         | 1      | 0.9          |
| 10/10/01             | 7.45         | 1      | 2.72         |
| 10/17/01             | 6.81         | 1      | 2.03         |
| 10/24/01             | 6.84         | 1      | 2.44         |
| 10/31/01             | 7.1          | 1      | 2.14         |
| 11/07/01             | 6.99         | 1      | 1.9          |
| 11/14/01             | 7.38         | 1      | 5            |
| 11/21/01             | 6.88         | 1      | 2.56         |
| 11/28/01             | 7.16         | 1      | 3.18         |
| 12/05/01             | 7.33         | 2.48   | 2.54         |
| 12/12/01             | 6.86         | 1      | 0.99         |
| 12/19/01             | 7.53         | 1      | 0.99         |
| 12/26/2001           | 6.54         | 10     | 10           |
| Min                  | 6.08         | 0.02   | 0.33         |
| Avg                  | 6.86         | 1.13   | 2.60         |
| Max                  | 7.84         | 10.00  | 37.10        |

| Date       | Road |       |       |
|------------|------|-------|-------|
| 1/2/2002   | pH   | NH3   | F     |
| 1/9/2002   | 6.69 |       |       |
| 1/16/2002  | 7.1  |       |       |
| 1/23/2002  | 6.74 |       |       |
| 1/30/2002  | 6.0  |       |       |
| 2/6/2002   | 7.0  |       |       |
| 2/13/2002  |      |       |       |
|            | 7.6  |       | 2.12  |
| 2/20/2002  | 8.1  |       | 1.89  |
| 2/27/2002  | 6.9  |       | 1.8   |
| 3/6/2002   | 7.23 |       | 1.58  |
| 3/13/2002  | 6.97 |       | 3.8   |
| 3/15/2002  | 6.7  |       | 3.65  |
| 3/20/2002  | 6.7  |       | 0.5   |
| 3/27/2002  | 6.81 |       | 1.51  |
| 4/3/2002   | 6.97 |       | 0.64  |
| 4/10/2002  | 7.16 |       | 25.1  |
| 4/17/2002  | 6.77 |       | 0.5   |
| 4/24/2002  | 6.99 |       | 36.1  |
| 5/1/2002   | 6.86 | 5 1   | 2     |
| 5/8/2002   | 6.56 | 5 1   | 2.09  |
| 5/15/2002  | 6.62 | 2 1   | 1.73  |
| 5/22/2002  | 6.93 | 3 1   | 0.78  |
| 5/29/2002  | 6.75 | 5 1   | 1.64  |
| 6/5/2002   | 6.49 |       | 1.6   |
| 6/12/2002  | 6.43 |       | 1.52  |
| 6/19/2002  | 6.62 |       | 1.5   |
| 6/26/2002  | 6.42 |       | 1.93  |
| 7/3/2002   | 7.08 |       | 1.49  |
| 7/10/2002  | 6.23 |       | 1.08  |
| 7/17/2002  | 6.24 |       | 0.72  |
| 7/24/2002  | 6.67 |       | 1.02  |
| 7/31/2002  | 6.59 |       | 1.65  |
| 8/7/2002   | 6.84 |       | 2.23  |
| 8/14/2002  |      |       |       |
| 8/21/2002  | 6.26 |       | 1.3   |
|            | 6.49 |       | 1.28  |
| 8/28/2002  | 6.75 |       | 0.4   |
| 9/4/2002   | 6.53 |       | 1.34  |
| 9/11/2002  | 6.58 |       | 1.4   |
| 9/18/2002  | 7.03 |       | 0.53  |
| 9/25/2002  | 6.26 |       | 0.52  |
| 10/2/2002  | 7.34 |       | 0.53  |
| 10/9/2002  | 6.77 |       | 1.53  |
| 10/16/2002 | 6.9  |       | 0.4   |
| 10/23/2002 | 6.24 |       | 0.4   |
| 10/30/2002 | 6.29 | 1     | 0.5   |
| 11/6/2002  | 6.55 | 1     | 0.4   |
| 11/13/2002 | 6.06 | 1     | 0.4   |
| 11/20/2002 | 6.03 | 1     | 0.4   |
| 11/27/2002 | 6.07 | 1     | 0.56  |
| 12/4/2002  | 6.09 |       | 0.68  |
| 12/11/2002 | 6.26 |       | 1     |
| 12/18/2002 | 6.39 |       | 1     |
| 12/26/2002 | 6.48 |       | 1     |
|            | 6.28 |       | 0.95  |
| Min        | 6.03 | 0.05  | 0.4   |
| Avg        | 6.67 |       | 2.66  |
| Max        | 8.11 | 24.40 | 36.10 |
| max.       | 0.11 | £4.4U | 30.10 |

# **Stormwater Monitoring 2003**

|            | Road |      |      |
|------------|------|------|------|
| Date       | pН   | NH3  | F    |
| 1/2/2003   | 6.6  | 2.44 | 8.0  |
| 1/8/2003   | 7.15 | 1    | 1.79 |
| 1/15/2003  | 7.11 | 1    | 1.44 |
| 1/22/2003  | 6.9  | 1    | 0.51 |
| 1/29/2003  | 6.37 | 2    | 0.54 |
| 2/5/2003   | 6.38 | 1    | 0.5  |
| 2/12/2003  | 6.21 | 1    | 0.4  |
| 2/19/2003  | 5.94 | 1    | 0.4  |
| 3/14/2003  | 6.13 | 1    | 0.5  |
| 3/21/2003  | 6.37 | 1    | 0.4  |
| 4/11/2003  | 6.25 | 1    | 0.5  |
| 4/16/2003  | 6.76 | 1    | 0.4  |
| 5/30/2003  | 7.08 | 1    | 0.4  |
| 6/12/2003  | 6.1  | 1    | 0.26 |
| 6/27/2003  | 4.37 | 1    | 0.58 |
| 6/30/2003  | 5.23 | 1    | 0.4  |
| 7/9/2003   | 4.14 | 1    | 0.4  |
| 7/23/2003  | 6.75 | 1    | 0.44 |
| 8/27/2003  | 7.32 | 1    | 0.4  |
| 9/18/2003  | 7.17 | 1    | 0.4  |
| 9/25/2003  | 6.95 | 2.55 | 0.77 |
| 10/1/2003  | 6.53 | 1    | 3.2  |
| 10/8/2003  | 4.23 | 1    | 0.5  |
| 10/15/2003 | 6.83 | 1    | 0.5  |
| 10/24/2003 | 6.57 | 1.87 | 1.65 |
| 10/31/2003 | 6.62 | 1    | 0.5  |
| 11/5/2003  | 6.9  | 1.16 | 5.59 |
| 11/12/2003 | 7.04 | 1.89 | 1.61 |
| 11/19/2003 | 7.35 | 2.04 | 1.58 |
| 11/26/2003 | 7.03 | 1    | 3.5  |
| 12/5/2003  | 2    | 1.02 | 0.4  |
| 12/10/2003 | 6.07 | 1    | 0.4  |
| 12/31/2003 | 7.1  | 1    | 0.5  |
| Min        | 2    | 1    | 0.26 |
| Avg        | 6.29 | 1.21 | 0.97 |
| Max        | 7.35 | 2.55 | 5.59 |

| Stormwater Monitoring 2004 |              |                      |             |  |  |  |  |
|----------------------------|--------------|----------------------|-------------|--|--|--|--|
|                            | Road         |                      |             |  |  |  |  |
| Date                       | рН           | NH3                  | F           |  |  |  |  |
| 1/8/04                     | 6.96         | 1.97                 | 1.81        |  |  |  |  |
| 1/14/2004                  | 7.2          |                      |             |  |  |  |  |
| 1/21/2004                  | 7.42         |                      |             |  |  |  |  |
| 1/28/04                    | 6.87         |                      |             |  |  |  |  |
| 1/30/04                    | 6.67         |                      | 0.4         |  |  |  |  |
|                            |              |                      |             |  |  |  |  |
| 2/4/2004                   | 7.05         |                      | 0.7         |  |  |  |  |
| 2/11/2004                  | 6.25         |                      |             |  |  |  |  |
| 2/20/2004                  | 6.26         |                      |             |  |  |  |  |
| 2/28/2004                  | 6.54         | 1                    | 0.41        |  |  |  |  |
| 3/3/2004                   | 6.81         | 1                    | 0.4         |  |  |  |  |
| 3/10/2004                  | 7.47         | 1                    | 0.26        |  |  |  |  |
| 3/16/2004                  | 6.87         | 1                    | 1           |  |  |  |  |
| 3/26/2004                  | 7            | 1                    | 0.86        |  |  |  |  |
| 3/31/2004                  | 7.41         | 1                    | 0.78        |  |  |  |  |
| 4/21/2004                  | 6.51         | 1                    | 0.5         |  |  |  |  |
| 4/30/2004                  | 7.42         | 1                    | 0.9         |  |  |  |  |
| 4/00/2004                  | 7.74         | •                    | 0.0         |  |  |  |  |
| 5/5/2004                   | 7.09         | 1                    | 0.4         |  |  |  |  |
| 5/19/2004                  | 7.07         | 1                    | 0.5         |  |  |  |  |
| 6/2/2004                   | 6.67         | 1                    | 0.5         |  |  |  |  |
| 6/16/2004                  | 6.55         | 1                    | 0.4         |  |  |  |  |
| 6/30/2004                  | 6.74         | 1                    | 0.93        |  |  |  |  |
| 7/7/2004                   | 6.72         | 1                    | 0.82        |  |  |  |  |
| 7/21/2004                  | 6.77         | 1                    | 0.5         |  |  |  |  |
| 7/28/2004                  | 6.52         | 1.4                  | 0.59        |  |  |  |  |
| 8/4/2004                   |              |                      |             |  |  |  |  |
| -11.101                    | 6 00         | 1.60                 | 2.00        |  |  |  |  |
| 8/11/2004<br>8/18/2004     | 6.99         | 1.68                 | 2.08<br>1.5 |  |  |  |  |
| 8/25/2004                  | 6.85<br>5.48 | 1<br>1               | 0.7         |  |  |  |  |
| 0/20/2004                  | 0.40         | •                    | <b>V.</b>   |  |  |  |  |
| 9/1/2004                   | 6.56         | 1                    | 0.75        |  |  |  |  |
| 9/8/2004                   | 6.4          | 1                    | 0.4         |  |  |  |  |
| 9/15/2004                  | 7.1          | 1.37                 | 1.6         |  |  |  |  |
| 9/22/2004                  | 6.88         | 1                    | 1.4         |  |  |  |  |
| 9/29/2004                  | 6.8          | 2                    | 0.5         |  |  |  |  |
| 10/6/2004                  | 6.96         | 1.4                  | 1.28        |  |  |  |  |
| 10/13/2004                 | 6.53         | 4.33                 | 1.23        |  |  |  |  |
| 20-Oct                     | 6.84         | 2.65                 | 1.69        |  |  |  |  |
| 10/27/2004                 | 6.96         | 5.62                 | 2.04        |  |  |  |  |
| 11/3/2004                  | 6.84         | 2.47                 | 2.16        |  |  |  |  |
| 11/3/2004                  | 6.76         | 2.4 <i>1</i><br>2.44 | 2.10        |  |  |  |  |
|                            |              |                      | 2.25<br>1.5 |  |  |  |  |
| 11/17/2004                 | 7<br>6 24    | 1.88                 |             |  |  |  |  |
| 11/24/2004                 | 6.34         | 1                    | 0.6         |  |  |  |  |
| 12/1/2004                  | 6.59         | 1                    | 0.5         |  |  |  |  |
| 12/8/2004                  | 6.97         | 1.77                 | 1.66        |  |  |  |  |
| 12/15/2004                 | 6.94         | 2.9                  | 2.3         |  |  |  |  |
|                            |              |                      |             |  |  |  |  |


| 12/22/2004 | 5.92 | 1    | 1.7  |
|------------|------|------|------|
| 12/29/2004 | 3.17 | 1    | 0.45 |
| Min        | 3.17 | 1    | 0.26 |
| . Avg      | 6.70 | 1.47 | 1.02 |
| Max        | 7.47 | 5.62 | 2.30 |

# **Stormwater Monitoring 2005**

| Date                 | Road<br>pH   | NH3  | F           |
|----------------------|--------------|------|-------------|
| 01/19/05<br>01/26/05 | 6.93<br>6.87 |      | 0.88<br>1   |
| 02/02/05             | 6.85         | , 1  | 0.48        |
| 02/09/05             | 6.67         |      | 0.4         |
| 02/16/05             | 7.01         |      | 1           |
| 02/23/05             | 6.58         | 1    | 0.4         |
| 03/09/05             | 6.7          |      | 0.5         |
| 03/16/05             | 6.48         |      | 0.4         |
| 03/23/05             | 7.04         |      | 0.4         |
| 03/30/05             | 6.35         | 1    | 0.4         |
| 04/06/05             | 6.81         | 1    | 0.4         |
| 04/13/05             | 6.64         | =    | 0.4         |
| 04/20/05<br>04/27/05 | 6.97<br>6.67 | 1    | 0.55<br>0.4 |
| 04/2//05             | 0.07         | '    | 0.4         |
| 05/11/05             | 7.1          | 1    | 0.7         |
| 05/18/05             | 6.83         | 1    | 1.33        |
| 05/25/05             | 6.94         | 2    | 1.84        |
| 06/08/06             | 6.65         | 1    | 0.4         |
| 06/15/06             | 6.76         | 1    | 0.4         |
| 06/29/05             | 6.63         | 1    | 0.5         |
| 07/06/05             | 6.63         | 1    | 0.52        |
| 07/13/05             | 6.94         | 1.56 | 0.99        |
| 07/20/05             | 6.53         | 1    | 0.62        |
| 07/26/05             | 6.57         | 1    | 0.54        |
| 08/03/05             | 6.47         | 1    | 0.46        |
| 08/10/06             | 6.35         | 1    | 0.4         |
| 08/31/06             | 5.64         | 1    | 0.5         |
| 09/07/05             | 6.8          | 1    | 0.79        |
| 10/05/05             | 6.96         | 1.83 | 1.11        |
| 10/12/05             | 6.91         | 2.79 | 0.47        |
| 10/19/05             | 7.12         | 2.97 | 0.7         |
| 10/26/05             | 7.27         | 1    | 1.66        |
| 11/09/05             | 7.46         | 1.99 | 2.33        |
| 11/23/05             | 6.7          | 1    | 0.52        |
| 12/07/05             | 6.93         | 1    | 10.9        |
| 12/14/05             | 7.18         | 1    | 0.5         |

| 12/21/05<br>12/28/05 | 6.79<br>6.85 | 1    | 0.7<br>0.72 |
|----------------------|--------------|------|-------------|
| Min                  | 5.64         | 1    | 0.4         |
| Avg                  | 6.78         | 1.26 | 0.98        |
| Max                  | 7.46         | 3.00 | 10.90       |

.





Westinghouse Electric Company Nuclear Fuel Columbia Fuel Site P.O. Drawer R Columbia, South Carolina 29250 USA

South Carolina Department of Health And Environmental Control Compliance Assurance Division Bureau of Water Attn: Mr. Bruce Crawford 2600 Bull Street Columbia, South Carolina 29201 Direct tel: 803-647-3671 Direct fax: 803-695-3964

e-mail: fischere@westinghouse.com

Your ref:

Our ref: LTR-EHS-06-025

Subject: NPDES Permit #SC0001848
Ground Water Sampling

Date: January 25, 2006

Dear Mr. Bruce Crawford:

Enclosed are the results from the semi-annual groundwater sampling survey initiated in December 2005. Please contact me at (803) 647-3671 if you have any questions regarding these results.

Sincerely,

WESTINGHOUSE ELECTRIC COMPANY

Roger E. Fischer, Sr. Engineer Environment Health & Safety

**Enclosures/VOC Vendor Reports** 

dom



# WESTINGHOUSE ELECTRIC COMPANY COLUMBIA, SOUTH CAROLINA GROUND WATER CHEMICAL REPORT DECEMBER 8, 2005

| Well  | pН  | F; mg/l | NH3(N), mg/l | NO <sub>3</sub> , mg/1 |
|-------|-----|---------|--------------|------------------------|
| W7    | 7.3 | 17.7    | 39.8         | 240                    |
| W10   | 6.0 | 7.0     | 6.9          | 29.8                   |
| W13   | 7.6 | <0.5    | <1.0         | 16.6                   |
| W15   | 6.7 | 6.2     | 15.1         | 18.4                   |
| W16   | 7.0 | 12.1    | 19.7         | 5.9                    |
| W18   | 6.5 | 15.9    | <1.0         | 55.9                   |
| W22   | NA  | NA      | NA           | NA                     |
| W24   | 5.8 | < 0.5   | <1.0         | 2.1                    |
| W26   | 5.3 | 3.0     | <1.0         | 1.0                    |
| W29   | 6.7 | 9.4     | 9.1          | 37.5                   |
| W30   | 6.5 | 15.6    | <1.0         | 476                    |
| W32   | 5.9 | < 0.5   | 1.4          | 49.6                   |
| W41   | 5.8 | < 0.4   | <1           | 41.7                   |
| W48   | 5.3 | < 0.4   | <1           | 8.7                    |
| WRW-2 | 5.3 | < 0.5   | <1.0         | 510                    |



Westinghouse Electric Company Nuclear Fuel Columbia Fuel Site P.O. Drawer R Columbia, South Carolina 29250 USA

| Well  | Well Water Depth | Conductivity |
|-------|------------------|--------------|
| W7    | 10.8             | 958          |
| W10   | 17.2             | 354          |
| W13   | 2.7              | 194          |
| W15   | 11.4             | 401          |
| W16   | 4.7              | 115          |
| W18   | 13.1             | NA           |
| W22   | NA               | NA           |
| W24   | 9.1              | 105          |
| W26   | 24.7             | 166          |
| W29   | 11.1             | 487          |
| W30   | 11.2             | 455          |
| W32   | 17.7             | 434          |
| W41   | 13.9             | 356          |
| W48   | 24.4             | 121          |
| WRW-2 | 16.0             | 1284         |



Page 3 of 3 Westinghouse Electric Company Nuclear Fuel Columbia Fuel Site P.O. Drawer R Columbia, South Carolina 29250 USA

# WESTINGHOUSE ELECTRIC COMPANY COLUMBIA, SOUTH CAROLINA GROUND WATER RADIOLOGICAL REPORT

uCi/ml x 10<sup>-6</sup>

December 8, 2005

| Well  | Gross Alpha | Gross Beta |
|-------|-------------|------------|
| W7    | 0.008       | 0.240      |
| W10   | 0.004       | 0.058      |
| W13   | 0.003       | 0.003      |
| W15   | 0.006       | 0.158      |
| W16   | 0.001       | 0.021      |
| W18   | 0.155       | 0.119      |
| W22   | NA          | NA         |
| W24   | 0.000       | 0.003      |
| W26   | 0.001       | 0.015      |
| W29   | 0.004       | 0.019      |
| W30   | 0.035       | 0.064      |
| W32   | 0.008       | 1.81       |
| W41   | 0.003       | 0.022      |
| W48   | 0.000       | 0.011      |
| WRW-2 | 0.028       | 0.184      |



Westinghouse Electric Company Nuclear Fuel Columbia Fuel Site P.O. Drawer R Columbia, South Carolina 29250 USA

South Carolina Department of Health And Environmental Control Compliance Assurance Division Bureau of Water Attn: Mr. Bruce Crawford 2600 Bull Street Columbia, South Carolina 29201 Direct tel: 803-647-3671 Direct fax: 803-695-3964

e-mail: fischere@westinghouse.com

Your ref:

Our ref: LTR-EHS-05-346

Subject: NPDES Permit #SC0001848
Ground Water Sampling

Date: September 26, 2005

Dear Mr. Bruce Crawford:

Enclosed are the results from the semi-annual groundwater sampling survey initiated in June 2005. Please contact me at (803) 647-3671 if you have any questions regarding these results.

Sincerely,

WESTINGHOUSE ELECTRIC COMPANY

Roger E. Fischer, Sr. Engineer Environment Health & Safety

**Enclosures** 

dom

WESTINGHOUSE ELECTRIC COMPANY



### COLUMBIA, SOUTH CAROLINA GROUND WATER CHEMICAL REPORT

JUNE 8, 2005

|       |           | *************************************** | 0, 2000          |                        |
|-------|-----------|-----------------------------------------|------------------|------------------------|
| Well  | <u>pH</u> | <u>F; mg/l</u>                          | $NH_3(N)$ , mg/l | NO <sub>3</sub> , mg/l |
| W7    | 6.7       | 16.0                                    | 45.8             | 41.5                   |
| W10   | 4.1       | 1.7                                     | 4.7              | 22.9                   |
| W13   | 7.4       | < 0.5                                   | <1.0             | 6.9                    |
| W15   | 6.0       | 4.6                                     | <1.0             | 16.5                   |
| W16   | 6.9       | 0.9                                     | <1.0             | 5.2                    |
| W18   | Dry       | NA                                      | NA               | NA                     |
| W22   | 6.1       | < 0.5                                   | <1.0             | 2.5                    |
| W24   | 5.9       | < 0.5                                   | <1.0             | 2.2                    |
| W26   | 5.4       | 3.5                                     | <1.0             | 6.0                    |
| W29   | 6.5       | 7.0                                     | 6.8              | 18.5                   |
| W30   | 6.2       | 10.0                                    | 30.6             | 521                    |
| W32   | 5.2       | < 0.5                                   | <1.0             | 46                     |
| W41   | 5.7       | < 0.4                                   | <1               | 35.1                   |
| W48   | 5.4       | <0.5                                    | <1               | 7.8                    |
| WRW-2 | 5.3       | <0.5                                    | <1.0             | 153                    |



Westinghouse Electric Company Nuclear Fuel Columbia Fuel Site P.O. Drawer R Columbia, South Carolina 29250 USA

| Well  | Well Water Depth | Conductivity |
|-------|------------------|--------------|
| W7    | 10.8             | 958          |
| W10   | 17.7             | 354          |
| W13   | 2.1              | 194          |
| W15   | 11.8             | 401          |
| W16   | 1.9              | 115          |
| W18   | NA               | NA           |
| W22   | 9.1              | 40           |
| W24   | 9.9              | 105          |
| W29   | 11.6             | 487          |
| W30   | 11.8             | 455          |
| W32   | 18.4             | 434          |
| W26   | 25.6             | 166          |
| W41   | 16.1             | 356          |
| W48   | 26.4             | 121          |
| WRW-2 | 18.1             | 1284         |



Page 3 of 3
Westinghouse Electric Company
Nuclear Fuel
Columbia Fuel Site
P.O. Drawer R
Columbia, South Carolina 29250
USA

## WESTINGHOUSE ELECTRIC COMPANY COLUMBIA, SOUTH CAROLINA GROUND WATER RADIOLOGICAL REPORT

uCi/ml x 10<sup>-6</sup>
June 8, 2005

| <u>Well</u> | Gross Alpha | Gross Beta |
|-------------|-------------|------------|
| W7          | 0.005       | 0.175      |
| W10         | 0.007       | 0.028      |
| W13         | 0.000       | 0.001      |
| W15         | 0.001       | 0.005      |
| W16         | 0.004       | 0.014      |
| W18         | NA          | NA         |
| W22         | 0.000       | 0.007      |
| W24         | 0.000       | 0.009      |
| W26         | 0.002       | 0.010      |
| W29         | 0.004       | 0.009      |
| W30         | 0.045       | 0.061      |
| W32         | 0.070       | 1.02       |
| W41         | 0.003       | 0.023      |
| W48         | 0.000       | 0.011      |
| WRW-2       | 0.011       | 0.099      |
|             |             |            |



Page 1 of 1

Westinghouse Electric Company Nuclear Fuel Columbia Fuel Site P.O. Drawer R Columbia, South Carolina 29250 USA

Date: February 10, 2005

Direct tel: 803-647-3671 Direct fax: 803-695-3964

e-mail: fischere@westinghouse.com

Your ref:

Our ref: LTR-EHS-05-68

South Carolina Department of Health And Environmental Control Compliance Assurance Division Bureau of Water Attn: Mr. Bruce Crawford 2600 Bull Street Columbia, South Carolina 29201

Subject: NPDES Permit #SC0001848
Ground Water Sampling

Dear Mr. Bruce Crawford:

Enclosed are the results from the semi-annual groundwater sampling survey initiated in December 2004. Please contact me at (803) 647-3671 if you have any questions regarding these results.

Sincerely,

WESTINGHOUSE ELECTRIC COMPANY

Roger E. Fischer, Sr. Engineer Environment Health & Safety

**Enclosures** 

dom



# WESTINGHOUSE ELECTRIC COMPANY COLUMBIA, SOUTH CAROLINA GROUND WATER CHEMICAL REPORT DECEMBER 12, 2004

| Well  | pН  | F; mg/l | NH3(N), mg/l | $NO_3$ , $mg/l$ |
|-------|-----|---------|--------------|-----------------|
| W7    | 7.6 | 19.6    | <1.0         | 38.8            |
| W10   | 6.0 | 5.6     | 6.9          | 25.0            |
| W13   | 7.6 | 0.5     | <1           | 8.1             |
| W15   | 6.3 | 7.2     | 17.2         | 15.9            |
| W16   | 6.6 | 13.0    | 23.6         | 4.6             |
| W18   | Dry | NA      | NA           | NA              |
| W22   | 5.8 | < 0.4   | 6.9          | 37.0            |
| W24   | 7.3 | <0.4    | <1.0         | 2.8             |
| W26   | 5.4 | 3.5     | <1.0         | 5.8             |
| W29   | 6.8 | 9.6     | 9.4          | 27.7            |
| W30   | 6.4 | 19.2    | 32.6         | 380             |
| W32   | 6.1 | < 0.4   | <1.0         | 37.7            |
| W41   | 5.7 | < 0.4   | <1           | 36.4            |
| W48   | 5.4 | < 0.4   | <1           | 7.8             |
| WRW-2 | 5.9 | 0.4     | <1           | 54.9            |



Page 1 of 1

Westinghouse Electric Company Nuclear Fuel Columbia Fuel Site P.O. Drawer R Columbia, South Carolina 29250 USA

| Well  | Well Water Depth | Conductivity |
|-------|------------------|--------------|
| W7    | 9.2              | 988          |
| W10   | 14.6             | 420          |
| W13   | 9.3              | 210          |
| W15   | 14.9             | 377          |
| W16   | 2.6              | 429          |
| W18   | NA               | NA           |
| W22   | 8.8              | 349          |
| W24   | 8.1              | 100          |
| W29   | 9.9              | 542          |
| W30   | 9.9              | 3160         |
| W32   | 15.8             | 410          |
| W26   | 26.2             | 161          |
| W41   | 16.4             | 405          |
| W48   | 27.1             | 123          |
| WRW-2 | 18.8             | 556          |



#### Page 3 of 3

Westinghouse Electric Company Nuclear Fuel Columbia Fuel Site P.O. Drawer R Columbia, South Carolina 29250 USA

## WESTINGHOUSE ELECTRIC COMPANY COLUMBIA, SOUTH CAROLINA GROUND WATER RADIOLOGICAL REPORT

uCi/ml x 10<sup>-6</sup>

December 12, 2004

| <u>Well</u> | Gross Alpha | Gross Beta |
|-------------|-------------|------------|
| <b>W7</b>   | 0.009       | 0.097      |
| W10         | 0.006       | 0.025      |
| W13         | 0.002       | 0.013      |
| W15         | 0.001       | 0.062      |
| W16         | 0.001       | 0.017      |
| W18         | NA          | NA         |
| W22         | 0.006       | 0.144      |
| W24         | 0.000       | 0.009      |
| W26         | 0.001       | 0.011      |
| W29         | 0.002       | 0.007      |
| W30         | 0.021       | 0.064      |
| W32         | 0.075       | 0.546      |
| W41         | 0.002       | 0.008      |
| W48         | 0.001       | 0.004      |
| WRW-2       | 0.007       | 0.015      |

REF-04-014 March 8, 2004

South Carolina Department of Health and Environmental Control Enforcement Division Bureau of Water Pollution Control 2600 Bull Street Columbia, SC 29201

Dear Sirs:

Enclosed are the results from the quarterly groundwater sampling survey conducted March 27, 2002. Please contact me at (803) 647-3671 if you have any questions regarding these results.

Sincerely,

WESTINGHOUSE ELECTRIC COMPANY

Roder E. Fischer, Sr. Engineer Integrated Safety Engineering

Enclosure

# WESTINGHOUSE COMMERCIAL NUCLEAR FUEL DIVISION COLUMBIA, SOUTH CAROLINA SPECIAL GROUND WATER CHEMICAL REPORT MARCH 27, 2002

### TABLE 1

| Well | pН  | F; mg/l | $NH_3(N)$ , mg/l |
|------|-----|---------|------------------|
| W7   | 7.5 | 20.1    | 38               |
| W10  | 5.7 | 9.8     | 2.7              |
| W13  | 7.5 | <1.0    | <1               |
| W15  | 6.3 | 2.6     | 15               |
| W16  | 6.8 | 9.4     | 25.8             |
| W22  | 4.4 | <1.0    | 2.4              |
| W24  | 5.6 | <1.0    | <1.0             |
| W29  | 6.4 | 5.9     | 10.1             |
| W30  | 6.0 | <1.0    | <1.0             |
| W32  | 6.1 | <1      | <1.0             |

### TABLE II

| Well | Well Water Depth | Conductivity |
|------|------------------|--------------|
| W7   | 12'9"            | 990          |
| W10  | 20'1"            | 460          |
| W13  | 4'1"             | 270          |
| W15  | 14'2"            | 415          |
| W16  | 2'6"             | 500          |
| W22  | 11'9"            | 790          |
| W24  | 10'2"            | 80           |
| W29  | 13'7"            | 640          |
| W30  | 13'8"            | 1300         |
| W32  | 20'2"            | 260          |

## WESTINGHOUSE ELECTRIC COMPANY COLUMBIA, SOUTH CAROLINA SPECIAL GROUND WATER RADIOLOGICAL REPORT

### uCi/ml x 10<sup>-6</sup> MARCH 27, 2002

| <u>Well</u> | Gross Alpha | Gross Beta |
|-------------|-------------|------------|
| W7          | 0.002       | 0.309      |
| W10         | 0.002       | 0.095      |
| W13         | 0.003       | 0.006      |
| W15         | 0.001       | 0.254      |
| W16         | 0.001       | 0.033      |
| W22         | 0.045       | 2.7        |
| W24         | 0.001       | 0.003      |
| W29         | 0.003       | 0.014      |
| W30         | 0.014       | 0.114      |
| W32         | 0.009       | 1.68       |
|             |             |            |

### WESTINGHOUSE ELECTRIC COMPANY COLUMBIA, SOUTH CAROLINA

### SPECIAL GROUND WATER CHEMICAL REPORT

### MARCH 27, 2002

### SUPPLEMENTAL LISTING

uCi/ml x 10<sup>-6</sup>

| Well | Gross Alpha | Gross Beta |
|------|-------------|------------|
| W3A  | 0.001       | 0.000      |
| W14  | 0.002       | 0.010      |
| W19  | 0.002       | 0.001      |
| W20  | 0.0002      | 0.001      |
| W23  | 0.001       | 0.002      |
| W26  | 0.002       | 0.021      |
| W27  | 0.000       | 0.008      |
| W28  | 0.003       | 0.014      |
| W33  | 0.001       | 0.014      |
| W37  | 0.001       | 0.002      |
| W38  | 0.001       | 0.004      |
|      |             |            |

### WESTINGHOUSE ELECTRIC COMPANY COLUMBIA, SOUTH CAROLINA

### SPECIAL GROUND WATER CHEMICAL REPORT

### MARCH 27, 2002

### SUPPLEMENTAL LISTING

### TABLE 1

| <u>pH</u> | F; mg/l                                                            | NH3(N), mg/l | Conductivity |
|-----------|--------------------------------------------------------------------|--------------|--------------|
| 5.8       | <1                                                                 | <1           | 24           |
| 6.4       | <1                                                                 | <1           | 440          |
| 5.7       | <1                                                                 | <1           | 110          |
| 5.7       | <1                                                                 | <1           | 110          |
| 6.1       | <1                                                                 | <1           | 130          |
| 5.1       | 6.5                                                                | <1           | 550          |
| 6.4       | 2.1                                                                | <1           | 240          |
| 5.8       | 75                                                                 | <1           | 620          |
| 6.1       | <1                                                                 | <1           | 170          |
| 6.7       | <1                                                                 | <1           | 150          |
| 6.4       | <1                                                                 | <1           | 980          |
|           | 5.8<br>6.4<br>5.7<br>5.7<br>6.1<br>5.1<br>6.4<br>5.8<br>6.1<br>6.7 | 5.8       <1 | 5.8       <1 |

### TABLE II

| Well | Well Water Depth |
|------|------------------|
| W3A  | 4'2"             |
| W14  | 19'8"            |
| W19B | 28'7"            |
| W20  | 9'2"             |
| W23  | 21'2"            |
| W26  | 28'3"            |
| W27  | 12'5"            |
| W28  | 13'6"            |
| W33  | 17'8"            |
| W37  | 13"3"            |
| W38  | 14"5"            |

REF-04-008 March 8, 2004

South Carolina Department of Health and Environmental Control Enforcement Division Bureau of Water Pollution Control 2600 Bull Street Columbia, SC 29201

Dear Sirs:

Enclosed are the results from the quarterly groundwater sampling survey conducted March 30, 2001. Please contact me at (803) 647-3671 if you have any questions regarding these results.

Sincerely,

WESTINGHOUSE ELECTRIC COMPANY

Roger E. Fischer, Sr. Engineer Integrated Safety Engineering

Enclosure

# WESTINGHOUSE COMMERCIAL NUCLEAR FUEL DIVISION COLUMBIA, SOUTH CAROLINA SPECIAL GROUND WATER CHEMICAL REPORT MARCH 30, 2001

### TABLE 1

| Well | <u>pH</u> | F; mg/l | NH3(N), mg/l |
|------|-----------|---------|--------------|
| W7   | 8.5       | 24.6    | 63.6         |
| W10  | 4.4       | 8.3     | <1           |
| W13  | 7.4       | <1      | <1           |
| W15  | 6.8       | 3.5     | 10.1         |
| W16  | 6.9       | 1.2     | <1           |
| W22  | 5.9       | <1.0    | <1.0         |
| W24  | 6.0       | <1.0    | <1.0         |
| W29  | 6.6       | 8.2     | 3.3          |
| W30  | 6.8       | 29.7    | 44.4         |
| W32  | 5.2       | <1      | <1           |
|      |           |         |              |

### TABLE II

| Well | Well Water Depth | Conductivity |
|------|------------------|--------------|
| W7   | 12'9"            | 1040         |
| W10  | 20'1"            | 365          |
| W13  | 4'1"             | 136          |
| W15  | 14'2"            | 415          |
| W16  | 2'6"             | 170          |
| W22  | 11'9"            | 550          |
| W24  | 10'2"            | 82           |
| W29  | 13'7"            | 600          |
| W30  | 13'8"            | 1575         |
| W32  | 20'2"            | 330          |
|      |                  |              |

# WESTINGHOUSE ELECTRIC COMPANY COLUMBIA, SOUTH CAROLINA SPECIAL GROUND WATER RADIOLOGICAL REPORT

### uCi/ml x 10<sup>-6</sup> MARCH 30, 2001

| Well | Gross Alpha | Gross Beta |
|------|-------------|------------|
| W7   | 0.003       | 0.311      |
| W10  | 0.002       | 0.072      |
| W13  | 0.002       | 0.003      |
| W15  | 0.012       | 0.276      |
| W16  | 0.005       | 0.015      |
| W22  | 0.060       | 1.19       |
| W24  | 0.001       | 0.001      |
| W29  | 0.004       | 0.015      |
| W30  | 0.026       | 0.056      |
| W32  | 0.030       | 1.65       |

### WESTINGHOUSE ELECTRIC COMPANY COLUMBIA, SOUTH CAROLINA

### SPECIAL GROUND WATER CHEMICAL REPORT

### MARCH 30, 2001

### SUPPLEMENTAL LISTING

uCi/ml x 10<sup>-6</sup>

| Well | Gross Alpha | Gross Beta |
|------|-------------|------------|
| W3A  | 0.001       | 0.003      |
| W14  | 0.001       | 0.006      |
| W19  | 0.005       | 0.015      |
| W20  | 0.000       | 0.002      |
| W23  | 0.014       | 0.034      |
| W26  | 0.002       | 0.037      |
| W27  | 0.000       | 0.002      |
| W28  | 0.004       | 0.014      |
| W33  | 0.001       | 0.006      |
| W37  | 0.001       | 0.000      |
| W38  | 0.003       | 0.006      |
|      |             |            |

### WESTINGHOUSE ELECTRIC COMPANY COLUMBIA, SOUTH CAROLINA

### SPECIAL GROUND WATER CHEMICAL REPORT

### MARCH 30, 2001

#### SUPPLEMENTAL LISTING

### TABLE 1

| *** ** | **        | T (1    | <b>MIX OD</b>    |              |
|--------|-----------|---------|------------------|--------------|
| Well   | <u>pH</u> | F; mg/l | $NH_3(N)$ , mg/l | Conductivity |
| W3A    | 5.6       | <1      | <1               | 24           |
| W14    | 6.4       | <1      | <1               | 280          |
| W19B   | 6.6       | <1      | <1               | 150          |
| W20    | 5.8       | <1      | <1               | 100          |
| W23    | 6.4       | <1      | <1               | 140          |
| W26    | 5.0       | 5.7     | <1               | 250          |
| W27    | 6.5       | 1.8     | 4.6              | 280          |
| W28    | 6.1       | 68      | <1               | 1210         |
| W33    | 5.5       | <1      | <1               | 200          |
| W37    | 5.9       | <1      | <1               | 158          |
| W38    | 5.5       | <1      | <1               | 640          |
|        |           |         |                  |              |

### TABLE II

| Well | Well Water Depth |
|------|------------------|
| W3A  | 4'2"             |
| W14  | 19'8"            |
| W19B | 28'7"            |
| W20  | 9'2"             |
| W23  | 21'2"            |
| W26  | 28'3"            |
| W27  | 12'5"            |
| W28  | 13'6"            |
| W33  | 17'8"            |
| W37  | 13"3"            |
| W38  | 14"5"            |
|      |                  |

### SHEALY ENVIRONMENTAL SERVICES, INC.

### Executive Summary Westinghouse Electric Company

Lot Number: HF19026

| Sample | Sample ID | Matrix  | Parameter              | Method | Result | Q Units | Page |
|--------|-----------|---------|------------------------|--------|--------|---------|------|
| 002    | RW-2      | Aqueous | cis-1,2-Dichloroethene | 8260B  | 2.4    | ug/L    | 10   |
| 002    | RW-2      | Aqueous | Tetrachloroethene      | 8260B  | 190    | ug/L    | 11   |
| 002    | RW-2      | Aqueous | 1,1,2-Trichloroethane  | 8260B  | 1.4    | ug/L    | 11   |
| 002    | RW-2      | Aqueous | Trichloroethene        | 8260B  | 9.6    | ug/L    | 11   |
| 004    | W-16      | Aqueous | cis-1,2-Dichloroethene | 8260B  | 34     | . ug/L  | 20   |
| 004    | W-16      | Aqueous | Tetrachloroethene      | 8260B  | 37     | ug/L    | 21   |
| 004    | W-16      | Aqueous | Trichloroethene        | 8260B  | 9.0    | ug/L    | 21   |
| 005    | W-18      | Aqueous | Tetrachloroethene      | 8260B  | 2.1    | ug/L    | 26   |
| 006    | W-26      | Aqueous | cis-1,2-Dichloroethene | 8260B  | 13     | ug/L    | 30   |
| 006    | W-26      | Aqueous | Tetrachioroethene      | 8260B  | 2.2    | ug/L    | 31   |
| 006    | W-26      | Aqueous | Trichloroethene        | 8260B  | 1.3    | ug/L    | 31   |
| 007    | W-33      | Aqueous | cis-1,2-Dichloroethene | 8260B  | 2.1    | ug/L    | 35   |
| 007    | W-33      | Aqueous | Tetrachloroethene      | 8260B  | 530    | ug/L    | 36   |
| 007    | W-33      | Aqueous | Trichloroethene        | 8260B  | 87     | ug/L    | 36   |
| 800    | W-37      | Aqueous | Chloroform             | 8260B  | 2.7    | ug/L    | 40   |
| 009    | W-38      | Aqueous | Chloroform             | 8260B  | 2.3    | ug/L    | 45   |
| 009    | W-38      | Aqueous | Tetrachloroethene      | 8260B  | 2.1    | ug/L    | 46   |
| 009    | W-38      | Aqueous | Trichloroethene        | 8260B  | 47     | ug/L    | 46   |
| 010    | W-41      | Aqueous | cis-1,2-Dichloroethene | 8260B  | 3.0    | ug/L    | 50   |
| 010    | W-41      | Aqueous | Tetrachloroethene      | 8260B  | 300    | ug/L    | 51   |
| 010    | W-41      | Aqueous | Trichloroethene        | 8260B  | 62     | ug/L    | 51   |
| 011    | W-48      | Aqueous | cis-1,2-Dichloroethene | 8260B  | 18     | ug/L    | 55   |
| 011    | W-48      | Aqueous | Tetrachloroethene      | 8260B  | 380    | ug/L    | 56   |
| 011 \  | W-48      | Aqueous | Trichloroethene        | 8260B  | 7.5    | ug/L    | 56   |

(24 detections)

1

### SHEALY ENVIRONMENTAL SERVICES, INC.

### Executive Summary Westinghouse Electric Company

Lot Number: GL19015 12/19/05

| Sampl | e Sample ID | Matrix   | Parameter              | Method | Result ( | Q Units | Page |
|-------|-------------|----------|------------------------|--------|----------|---------|------|
| 001   | RW2         | Aqueous  | cis-1,2-Dichloroethene | 8260B  | 1.7      | ug/L    | 6    |
| 001   | RW2         | Aqueous  | Tetrachloroethene      | 8260B  | 83       | ug/L    | 7    |
| 001   | RW2         | Aqueous  | Trichloroethene        | 8260B  | 7.2      | ug/L    | 7    |
| 002   | W16         | Aqueous  | cis-1,2-Dichloroethene | 8260B  | 40       | ug/L    | 11   |
| 002   | W16         | Aqueous  | Tetrachloroethene      | 8260B  | 39       | ug/L    | 12   |
| 002   | W16         | Aqueous  | Trichloroethene        | 8260B  | 8.7      | ug/L    | 12   |
| 003   | W18         | Aqueous  | cis-1,2-Dichloroethene | 8260B  | 1.0      | ug/L    | 16   |
| 003   | W18         | Aqueous  | Tetrachloroethene      | 8260B  | 4.3      | ug/L    | 17   |
| 004   | W26         | Aqueous  | cis-1,2-Dichloroethene | 8260B  | 65       | ug/L    | 21   |
| 004   | W26         | Aqueous  | Tetrachloroethene      | 8260B  | 24       | ug/L    | 22   |
| 004   | W26         | Aqueous  | Trichloroethene        | 8260B  | 9.8      | ug/L    | 22   |
| 005   | W33         | Aqueous  | cis-1,2-Dichloroethene | 8260B  | 1.6      | ug/L    | 26   |
| 005   | W33         | Aqueous  | Tetrachloroethene      | 8260B  | 360      | ug/L    | 27   |
| 005   | W33         | Aqueous  | Trichloroethene        | 8260B  | 61       | ug/L    | 27   |
| 006   | W38         | Aqueous  | Chloroform             | 8260B  | 5.4      | ug/L    | 31   |
| 006   | W38         | Aqueous' | Tetrachloroethene      | 8260B  | 2.5      | ug/L    | 32   |
| 006   | W38         | Aqueous  | Trichloroethene        | 8260B  | 45       | ug/L    | 32   |
| 007   | W39         | Aqueous  | Tetrachloroethene      | 8260B  | 140      | ug/L    | 37   |
| 007   | W39         | Aqueous  | Trichloroethene        | 8260B  | 7.2      | ug/L    | 37   |
| 800   | W41         | Aqueous  | cis-1,2-Dichloroethene | 8260B  | 3.3      | ug/L    | 41   |
| 800   | W41         | Aqueous  | Tetrachloroethene      | 8260B  | 280      | ug/L    | 42   |
| 800   | W41         | Aqueous  | Trichloroethene        | 8260B  | 72       | ug/L    | 42   |
| 009   | W48         | Aqueous  | cis-1,2-Dichloroethene | 8260B  | 22       | ug/L    | 46   |
| 009   | W48         | Aqueous  | Tetrachloroethene      | 8260B  | 370      | ug/L    | 47   |
| 009   | W48         | Aqueous  | Trichloroethene        | 8260B  | 10       | ug/L    | 47   |

(25 detections)

### SHEALY ENVIRONMENTAL SERVICES, INC.

### **Executive Summary**

#### **Westinghouse Electric Company**

Lot Number: FL23001 12/2 2/04

| Sample | Sample ID | Matrix  | Parameter              | Method | Result | Q Units | Page       |
|--------|-----------|---------|------------------------|--------|--------|---------|------------|
| 001    | W 7A      | Aqueous | Tetrachloroethene      | 8260B  | 1.3    | ug/L    | 6          |
| 003    | W 15      | Aqueous | cis-1,2-Dichloroethene | 8260B  | 2.2    | ug/L    | 9          |
| 003    | W 15      | Aqueous | Tetrachloroethene      | 8260B  | 44     | ug/L    | 10         |
| 003    | W 15      | Aqueous | Trichloroethene        | 8260B  | 3.8    | ug/L    | 10         |
| 004    | W 16      | Aqueous | Carbon disulfide       | 8260B  | 2.1    | ug/L    | 11         |
| 004    | W 16      | Aqueous | cis-1,2-Dichloroethene | 8260B  | 56     | ug/L    | 11         |
| 004    | W 16      | Aqueous | Tetrachloroethene      | 8260B  | 56     | ug/L    | 12         |
| 004    | W 16      | Aqueous | Trichloroethene        | 8260B  | 11     | ug/L    | 12         |
| 005    | W 26      | Aqueous | cis-1,2-Dichloroethene | 8260B  | 28     | ug/L    | 13         |
| 005    | W 26      | Aqueous | Tetrachloroethene      | 8260B  | 24     | ug/L    | 14         |
| 005    | W 26      | Aqueous | Trichloroethene        | 8260B  | 4.8    | ug/L    | 14         |
| 006    | W 27      | Aqueous | Carbon disulfide       | 8260B  | 1.5    | ug/L    | 15         |
| 007    | W 33      | Aqueous | cis-1,2-Dichloroethene | 8260B  | 2.8    | ug/L    | 17         |
| 007    | W 33      | Aqueous | Tetrachloroethene      | 8260B  | 280    | ug/L    | 18         |
| 007    | W 33      | Aqueous | Trichloroethene        | 8260B  | 50     | ug/L    | 18         |
| 800    | W 37      | Aqueous | Chloroform             | 8260B  | 1.1    | ug/L    | 19         |
| 009    | W 38      | Aqueous | Chloroform             | 8260B  | 11     | ug/L    | 21         |
| 009    | W 38      | Aqueous | Tetrachioroethene      | 8260B  | 9.0    | ug/L    | 22         |
| 009    | W 38      | Aqueous | Trichloroethene        | 8260B  | 100    | ug/L    | 22         |
| 010    | W 39      | Aqueous | cis-1,2-Dichloroethene | 8260B  | 1.2    | ug/L    | 23         |
| 010    | W 39      | Aqueous | Tetrachloroethene      | 8260B  | 110    | ug/L    | 24         |
| 010    | W 39      | Aqueous | Trichloroethene        | 8260B  | 7.1    | ug/L    | 24         |
| 011    | W 40      | Aqueous | Tetrachloroethene      | 8260B  | 2.2    | ug/L    | 26         |
| 012    | W 41R     | Aqueous | cis-1,2-Dichloroethene | 8260B  | 3.7    | ug/L    | 27         |
| 012    | W 41R     | Aqueous | Tetrachloroethene      | 8260B  | 320    | ug/L    | 28         |
| 012    | W 41R     | Aqueous | Trichloroethene        | 8260B  | 54     | ug/L    | 28         |
| 013    | W 42      | Aqueous | Carbon disulfide       | 8260B  | 1.2    | ug/L    | 29         |
| 016    | W 45      | Aqueous | Benzene                | 8260B  | 1.9    | ug/L    | 35         |
| 016    | W 45      | Aqueous | cis-1,2-Dichloroethene | 8260B  | 1.6    | ug/L    | 35         |
| 016    | W 45      | Aqueous | Ethylbenzene           | 8260B  | 1.6    | ug/L    | <b>3</b> 6 |
| 017    | W 46      | Aqueous | Tetrachloroethene      | 8260B  | 1.4    | ug/L    | 38         |
| 019    | W 48      | Aqueous | cis-1,2-Dichloroethene | 8260B  | 12     | ug/L    | 41         |
| 019    | W 48      | Aqueous | Tetrachloroethene      | 8260B  | 290    | ug/L    | 42         |
| 019    | W 48      | Aqueous | Trichloroethene        | 8260B  | 2.8    | ug/L    | 42         |
| 020    | RW 2R     | Aqueous | Tetrachloroethene      | 8260B  | 52     | ug/L    | 44         |
| 020    | RW 2R     | Aqueous | Trichloroethene        | 8260B  | 5.5    | ug/L    | 44         |

(36 detections)

February 17, 2004

### VOC's 2004- Well Analyses

| Well | 1-2 dichlorethene chlorofor | m tetratchlorethene | benzene Trichloroethene | ethybenzene Total VOC |
|------|-----------------------------|---------------------|-------------------------|-----------------------|
| 7    |                             |                     |                         | 0                     |
| 10   |                             |                     |                         | 0                     |
| 15   | 2                           | 49                  |                         | 55.1                  |
| 16   | 47                          | 62                  |                         |                       |
| 26   |                             | 7.3                 |                         | 7.3                   |
| 27   |                             |                     |                         | 0.0                   |
| 33   | 5.1                         | 470                 | 94                      | 569.1                 |
| 37   |                             |                     |                         | 0.0                   |
| 38   |                             | 8.4 12              | 140                     | 160.4                 |
| 39   | 4.6                         | 210                 | 10                      | 224.6                 |
| 40   |                             |                     |                         | 0.0                   |
| 41   | NA                          |                     |                         | 0.0                   |
| 42   |                             |                     |                         | 0.0                   |
| 43   |                             |                     |                         | 0.0                   |
| 44   |                             |                     |                         | 0.0                   |
| 45   | 1                           | 1.7                 | 2                       | 2.5 <b>7.2</b>        |
| 46   |                             |                     | 1                       | 1.0                   |
| 47   |                             |                     | 1.7                     | 1.7                   |
| 48   | 12                          | 320                 |                         |                       |
|      |                             |                     |                         | Avg <b>78.0</b>       |
|      |                             |                     |                         | Max 569.1             |

Table 1-1 SUMMARY OF MONITORING WELL DATA

Project No. 33143.500

| Well<br>Number | Latitude<br>(North) | Longitude<br>(West) | Land<br>Surface<br>Elevation<br>(Feet MSL) | Top Of<br>Casing<br>Elevation<br>(Feet MSL) | Total<br>Well<br>Depth<br>(Feet) | Casing<br>Diameter | Casing<br>Depth<br>(Feet) | Screen<br>Depth<br>(Feet) | Date<br>Completed |
|----------------|---------------------|---------------------|--------------------------------------------|---------------------------------------------|----------------------------------|--------------------|---------------------------|---------------------------|-------------------|
| W-3A *         | 33 52 44.4          | 80 55 16.1          | 119.1                                      | 121.25                                      | 82.5                             | 2 in.              | 72.5                      | 82.5                      | 06/11/85          |
| W-4            | 33 52 44.4          | 80 55 15.7          | 117.8                                      | 117.28                                      | 12                               | 4 in.              | 10                        | 12                        | 1977              |
| W-6            | 33 52 50.5          | 80 55 13.8          | 138.2                                      | 137.73                                      | 28.5                             | 2 in.              | 23.5                      | 28.5                      | 05/15/80          |
| W-7A           | 33 52 50.0          | 80 55 16.8          | 134.3                                      | 136.36                                      | 18                               | 2 in.              | 13                        | 18                        | 02/19/92          |
| W-10           | 33 52 49.9          | 80 55 19.3          | 138.2                                      | 140.33                                      | 23.5                             | 2 in.              | 18.5                      | 23.5                      | 05/14/80          |
| W-11           | 33 52 48.4          | 80 55 16.2          | 139.5                                      | 141.50                                      | 28.5                             | 2 in.              | 25.5                      | 28.5                      | 05/14/80          |
| W-13           | 33 52 47.4          | 80 55 11.8          | 137.3                                      | 139.28                                      | 18.5                             | 2 in.              | 15.5                      | 18.5                      | 05/14/80          |
| W-14A          | 33 52 47.0          | 80 55 09.5          | 137.3                                      | 139.87                                      | 28.5                             | 2 in.              | 23.5                      | 28.5                      | 05/04/88          |
| W-15           | 33 52 47.6          | 80 55 18.6          | 127.5                                      | 129.17                                      | 18.5                             | 2 in.              | 13.5                      | 18.5                      | 05/15/80          |
| W-16           | 33 52 47.0          | 80 55 14.5          | 126.7                                      | 126.20                                      | 18.5                             | 2 in.              | 15.5                      | 18.5                      | 05/15/80          |
| W-17           | 33 52 51.5          | 80 55 17.8          | 138.8                                      | 140.58                                      | 28                               | 2 in.              | 23.5                      | 28                        | 05/30/80          |
| W-18           | 33 52 51.0          | 80 55 15.7          | 138.7                                      | 137.95                                      | 17.5                             | 2 in.              | 12.5                      | 17.5                      | 07/08/80          |
| W-19B          | 33 53 02.5          | 80 55 32.4          | 141.3                                      | 143.92                                      | 40.5                             | 4 in.              | 30                        | 40.5                      | 03/17/95          |
| W-20           | 33 52 38.4          | 80 55 27.4          | 113.9                                      | 116.11                                      | 16.3                             | 2 in.              | 11.5                      | 16.3                      | 07/10/80          |
| W-22           | 33 52 50.6          | 80 55 13.8          | 138.2                                      | 137.83                                      | 17.8                             | 2 in.              | 13.4                      | 17.8                      | 07/12/80          |
| W-23           | 33 52 47.7          | 80 55 05.2          | 138.7                                      | 140.51                                      | 20                               | 2 in.              | 15                        | 20                        | 07/10/80          |
| W-24           | 33 53 08.4          | 80 54 35.7          | 141.1                                      | 143.16                                      | 15.1                             | 2 in.              | 10.1                      | 15.1                      | 07/09/80          |
| W-25           | 33 52 22.3          | 80 55 30.2          | 115.9                                      | 117.26                                      | 27.7                             | 2 in.              | 22.9                      | 27.7                      | 07/09/80          |
| W-26           | 33 52 49.5          | 80 55 22.1          | 141.5                                      | 143.36                                      | 30.5                             | 2 in.              | 25.5                      | 30.5                      | 07/11/80          |
| W-27           | 33 52 44.8          | 80 55 18.7          | 121.5                                      | 123.24                                      | 18.9                             | 2 in.              | 14.1                      | 18.9                      | 07/13/80          |
| W-28           | 33 52 52.2          | 80 55 11.4          | 138.4                                      | 140.09                                      | 14.7                             | 2 in.              | 9.8                       | 14.7                      | 07/13/80          |
| W-29           | 33 52 52.7          | 80 55 14.0          | 138.2                                      | 139.85                                      | 15.1                             | 2 in.              | 10                        | 15.1                      | 07/12/80          |
| W-30           | 33 52 51.9          | 80 55 13.5          | 138.2                                      | 140.11                                      | 15.2                             | 2 in.              | 10.2                      | 15.2                      | 07/11/80          |
| W-32           | 33 52 48.3          | 80 55 16.1          | 139.6                                      | 141.78                                      | 22.5                             | 2 in.              | 17                        | 22.5                      | 07/15/80          |
| W-33           | 33 52 54.9          | 80 55 20.6          | 138.8                                      | 140.46                                      | 20.7                             | 2 in.              | 15.1                      | 20.7                      | 07/15/80          |
| W-35           | 33 52 58.0          | 80 55 12.6          | 138.1                                      | 140.35                                      | 21                               | 2 in.              | 16                        | 21                        | 02/18/92          |
| W-36           | 33 53 01.7          | 80 55 08.5          | 135.6                                      | 137.60                                      | 20                               | 2 in.              | 15                        | 20                        | 02/19/92          |
| W-37           | 33 52 55.0          | 80 55 12.5          | 138.0                                      | 140.35                                      | 20.5                             | 2 in.              | 15.5                      | 20.5                      | 02/11/92          |
| W-38           | 33 52 53.4          | 80 55 12.9          | 138.2                                      | 140.94                                      | 20                               | 2 in.              | 15                        | 20                        | 02/18/92          |
| W-39           | 33 52 56.7          | 80 55 19.3          | 139.5                                      | 142.44                                      | 22                               | 2 in.              | 12                        | 22                        | 01/27/94          |
| W-40           | 33 52 57.3          | 80 55 14.0          | 138.0                                      | 140.49                                      | 15                               | 2 in.              | 5                         | 15                        | 07/18/84          |
| W-41           | 33 52 54.6          | 80 55 24.1          | 132.2                                      | 134.86                                      | 24                               | 2 in.              | 14                        | 24                        | 01/28/94          |
| W-42           | 33 52 51.6          | 80 55 24.7          | 139.0                                      | 142.20                                      | 30                               | 2 in.              | 20                        | 30                        | 01/27/94          |
| W-43           | 33 52 59.9          | 80 55 20.0          | 139.6                                      | 142.58                                      | 20.5                             | 2 in.              | 10.5                      | 20.5                      | 01/27/94          |
| W-44           | 33 52 56.6          | 80 55 27.7          | 132.9                                      | 135.91                                      | 26                               | 2 in.              | 16                        | 26                        | 02/01/94          |
| W-45           | 33 52 57.3          | 80 55 11.8          | 138.7                                      | 141.43                                      | 16                               | 2 in.              | 6                         | 16                        | 07/18/84          |
| W-46           | 33 52 52.4          | 80 55 21.2          | 133.4                                      | 135.83                                      | 25.5                             | 4 in.              | 15.5                      | 25.5                      | 03/27/95          |
| W-47           | 33 52 47.3          | 80 55 21.0          | 140.7                                      | 143.13                                      | 44.8                             | 4 in.              | 34.3                      | 44.8                      | 03/31/95          |
| W-48           | 33 52 50.1          | 80 55 23.7          | 140.7                                      | 143.68                                      | 41.3                             | 4 in.              | 30.7                      | 41.3                      | 03/30/95          |
| W-49 *         | 33 52 51.6          | 80 55 24.8          | 138.9                                      | 141.57                                      | 115                              | 2 in.              | 105                       | 115                       | 03/15/95          |
| W-50 *         | 33 52 57.2          | 80 55 14.0          | 138.1                                      | 140.79                                      | 124.5                            | 2 in.              | 114.5                     | 124.5                     | 03/21/95          |
| RW-1           | 33 52 57.8          | 80 55 12.3          | 137.4                                      | 138.21                                      | 33                               | 4 in.              | 19.2                      | 30                        | 04/01/95          |
| RW-2           | 33 52 54.2          | 80 55 21.7          | 137.9                                      | 139.44                                      | 32.3                             | 4 in.              | 19                        | 29.2                      | 03/10/95          |

Notes:

<sup>\*</sup> Black Mingo aquifer well. MSL = Mean Sea Level

Elevations for wells W-20 and W-25 not resurveyed.
Wells W-3, W-5, W-7, W-8, W-9, W-12, W-14, W-19, W-19A, W-21, and W-31 have been abandoned.

Table 3-1
SUMMARY OF WATER LEVELS

Project No. 33143,500

| Well<br>Number | Date<br>Measured                 | Land<br>Surface<br>Elevation<br>(Feet MSL) | Measuring<br>Point<br>Height<br>(Feet) | Measuring<br>Point<br>Elevation<br>(Feet MSL) | Water Level<br>Below<br>M.P.<br>(Feet) | Water Level<br>Below<br>L.S.<br>(Feet) | Water Level<br>Elevation<br>(Feet MSL) |
|----------------|----------------------------------|--------------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| W-35           | 02/09/94<br>03/08/94<br>04/18/95 | 138.1                                      | 2.25                                   | 140.35                                        | 12.48<br>11.89<br>10.24                | 10.2<br>9.6<br>8.0                     | 127.87<br>128.46<br>130.11             |
| W-36           | 02/09/94<br>03/08/94<br>04/18/95 | 135.6                                      | 2.00                                   | 137.60                                        | 9.76<br>8.69<br>6.85                   | 7.8 <sub>.</sub><br>6.7<br>4.9         | 127.84<br>128.91<br>130.75             |
| W-37           | 02/09/94<br>03/08/94<br>04/18/95 | 138.0                                      | 2.35                                   | 140.35                                        | 12.64<br>12.16<br>10.69                | 10.3<br>9.8<br>8.3                     | 127.71<br>128.19<br>129.66             |
| W-38           | 02/09/94<br>03/08/94<br>04/18/95 | 138.2                                      | 2.74                                   | 140.94                                        | 13.42<br>13.30<br>12.83                | 10.7<br>10.6<br>10.1                   | 127.52<br>127.64<br>128.11             |
| W-39           | 02/09/94<br>03/08/94<br>04/18/95 | 139.5                                      | 2.94                                   | 142.44                                        | 16.45<br>15.96<br>15.17                | 13.5<br>13.0<br>12.2                   | 125.99<br>126.48<br>127.27             |
| W-40           | 02/09/94<br>03/08/94<br>04/18/95 | 138.0                                      | 2.49                                   | 140.49                                        | 12.66<br>12.05<br>10.49                | 10.2<br>9.6<br>8.0                     | 127.83<br>128.44<br>130.00             |
| W-41           | 02/09/94<br>03/08/94<br>04/18/95 | 132.2                                      | 2.66                                   | 134.86                                        | 15.22<br>14.93<br>14.42                | 12.6<br>12.3<br>11.8                   | 119.64<br>119.93<br>120.44             |
| W-42           | 02/09/94<br>03/08/94<br>04/18/95 | 139.0                                      | 3.20                                   | 142.20                                        | 25.76<br>25.14<br>24.58                | 22.6<br>21.9<br>21.4                   | 116.44<br>117.06<br>117.62             |
| W-43           | 02/09/94<br>03/08/94<br>04/18/95 | 139.6                                      | 2.98                                   | 142.58                                        | 16.18<br>14.48<br>13.80                | 13.2<br>11.5<br>10.8                   | 126.40<br>128.10<br>128.78             |
| W-44           | 02/09/94<br>03/08/94<br>04/18/95 | 132.9                                      | 3.01                                   | 135.91                                        | 18.24<br>18.85<br>16.60                | 15.2<br>15.8<br>13.6                   | 117.67<br>117.06<br>119.31             |
| W-45           | 04/18/95                         | 138.7                                      | 2.73                                   | 141.43                                        | 11.31                                  | 8.6                                    | 130.12                                 |
| W-46           | 04/18/95                         | 133.4                                      | 2.43                                   | 135.83                                        | 13.20                                  | 10.8                                   | 122.63                                 |
| W-47           | 04/18/95                         | 140.7                                      | 2.43                                   | 143.13                                        | 25.24                                  | 22.8                                   | 117.89                                 |
| W-48           | 04/18/95                         | 140.7                                      | 2.98                                   | 143.68                                        | 25.48                                  | 22.5                                   | 118.20                                 |
| W-49           | 04/18/95                         | 138.9                                      | 2.67                                   | 141.57                                        | 27.78                                  | 25.1                                   | 113.79                                 |
| W-50           | 04/18/95                         | 138.1                                      | 2.69                                   | 140.79                                        | 21.92                                  | 19.2                                   | 118.87                                 |
| RW-1           | 04/18/95                         | 137.4                                      | 0.81                                   | 138.21                                        | NM ·                                   | NM                                     | NM                                     |
| RW-2           | 04/18/95                         | 137.9                                      | 1.54                                   | 139.44                                        | NM                                     | NM                                     | NM                                     |

Notes:

MSL = Mean Sea Level NM = Not measured

Table 3-1
SUMMARY OF WATER LEVELS

Project No. 33143.500

| Well<br>Number | Date<br>Measured                 | Land<br>Surface<br>Elevation<br>(Feet MSL) | Measuring<br>Point<br>Height<br>(Feet) | Measuring<br>Point<br>Elevation<br>(Feet MSL) | Water Level<br>Below<br>M.P.<br>(Feet) | Water Level<br>Below<br>L.S.<br>(Feet) | Water Level<br>Elevation<br>(Feet MSL) |
|----------------|----------------------------------|--------------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| W-3A           | 03/08/94<br>04/18/95             | 119.1                                      | 2.15                                   | 121.25                                        | 5.21<br>5.35                           | 3.1<br>3.2                             | 116.04<br>115.90                       |
| W-4            | -4 04/18/95 117.8 -0.52          |                                            | 117.28                                 | 6.00                                          | 6.5                                    | 111.28                                 |                                        |
| W-6            | 04/18/95                         | 138.2                                      | -0.47                                  | 137.73                                        | 10.03                                  | 10.5                                   | 127.70                                 |
| W-7A           | 03/08/94<br>04/18/95             | 134.3                                      | 2.06                                   | 136.36                                        | 10.57<br>11.24                         | 8.5<br>9.2                             | 125.79<br>125.12                       |
| W-10           | 04/18/95                         | 138.2                                      | 2.13                                   | 140.33                                        | 17.43                                  | 15.3                                   | 122.90                                 |
| W-11           | 04/18/95                         | 139.5                                      | 2.00                                   | 141.50                                        | 17.68                                  | 15.7                                   | 123.82                                 |
| W-13           | 04/18/95                         | 137.3                                      | 1.98                                   | 139.28                                        | 13.00                                  | 11.0                                   | 126.28                                 |
| W-14A          | 03/08/94<br>04/18/95             | 137.3                                      | 2.57                                   | 139.87                                        | 16.65<br>16.34                         | 14.1<br>13.8                           | 123.22<br>123.53                       |
| W-15           | 04/18/95                         | 127.5                                      | 1.67                                   | 129.17                                        | 11.22                                  | 9.6                                    | 117.95                                 |
| W-16           | 04/18/95                         | 126.7                                      | -0.50                                  | 126.20                                        | 2.60                                   | 3.1                                    | 123.60                                 |
| W-17           | 02/09/94<br>03/08/94<br>04/18/95 | 138.8                                      | 1.78                                   | 140.58                                        | 14.50<br>14.04<br>13.90                | 12.7<br>12.3<br>12.1                   | 126.08<br>126.54<br>126.68             |
| W-18           | 04/18/95                         | 138.7                                      | -0.75                                  | 137.95                                        | 10.02                                  | 10.8                                   | 127.93                                 |
| W-19B          | 04/18/95                         | 141.3                                      | 2.62                                   | 143.92                                        | 22.69                                  | 20.1                                   | 121.23                                 |
| W-20           | 04/18/95                         | 113.9                                      | 2.21                                   | 116.11                                        | 8.17                                   | 6.0                                    | 107.94                                 |
| W-22           | 04/18/95                         | 138.2                                      | -0.37                                  | 137.83                                        | 10.31                                  | 10.7                                   | 127.52                                 |
| W-23           | 04/18/95                         | 138.7                                      | 1.81                                   | 140.51                                        | 16.40                                  | 14.6                                   | 124.11                                 |
| W-24           | 04/18/95                         | 141.1                                      | 2.06                                   | 143.16                                        | 8.94                                   | 6.9                                    | 134.22                                 |
| W-25           | 04/18/95                         | 115.9                                      | 1.36                                   | 117.26                                        | 8.70                                   | 7.3                                    | 108.56                                 |
| W-26           | 02/09/94<br>03/08/94<br>04/18/95 | 141.5                                      | 1.86                                   | 143.36                                        | 26.12<br>25.46<br>24.54                | 24.3<br>23.6<br>22.7                   | 117.24<br>117.90<br>118.82             |
| W-27           | 03/08/94<br>04/18/95             | 121.5                                      | 1.74                                   | 123.24                                        | 9.26<br>9.63                           | 7.5<br>7.9                             | 113.98<br>113.61                       |
| W-28           | 04/18/95                         | 138.4                                      | 1.69                                   | 140.09                                        | 11.55                                  | 9.9                                    | 128.54                                 |
| W-29           | 04/18/95                         | 138.2                                      | 1.65                                   | 139.85                                        | 11.30                                  | 9.4                                    | 128.79                                 |
| W-30           | 03/08/94<br>04/18/95             | 138.2                                      | 1.91                                   | 140.11                                        | 12.40<br>11.64                         | 10.5<br>9.7                            | 127.71<br>128.47                       |
| W-32           | 04/18/95                         | 139.6                                      | 2.18                                   | 141.78                                        | 18.40                                  | 16.2                                   | 123.38                                 |
| W-33           | 02/09/94<br>03/08/94<br>04/18/95 | 138.8                                      | 1.66                                   | 140.46                                        | 15.88<br>15.47<br>15.07                | 14.2<br>13.8<br>13.4                   | 124.58<br>124.99<br>125.39             |

#### TABLE 3-3

### HISTORICAL SUMMARY OF ORGANIC PARAMETERS DETECTED IN MONITORING WELL SAMPLES

### Westinghouse Commercial Nuclear Fuel Division Columbia, South Carolina

Project No. 33143.500

|                |                |                    | -                 | Vol               | atile Organic (  | Compounds (V     | OCs)              | }                  |                |
|----------------|----------------|--------------------|-------------------|-------------------|------------------|------------------|-------------------|--------------------|----------------|
|                |                | No. 2              |                   | Ethyl-            | Tetrachioro-     | Trichloro-       | 1,2-DCE           | Vinyt              | Total          |
| Weil<br>Number | Sample<br>Date | Fuel Oil<br>(mg/L) | Benzene<br>(mg/L) | benzene<br>(mg/L) | ethene<br>(mg/L) | ethene<br>(mg/L) | (Total)<br>(mg/L) | Chloride<br>(mg/L) | VOCs<br>(mg/L) |
| W-3A           | 03/05/92       | NA NA              | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
|                | 04/14/92       | NA.                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
|                | 04/05/95       | 18                 | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL,           |
|                | 06/29/95       | 20                 | NA.               | NA                | NA               | NA               | NA                | NA                 | NA .           |
| W-4            | 04/05/95       | 2.8                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BOL            |
| W-6            | 04/04/95       | < 0.50             | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
| W-7A           | 03/04/92       | NA.                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
|                | 04/15/92       | NA.                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BOL            |
|                | 04/05/95       | 4.0                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL.           |
| W-10           | 03/03/95       | 6.2                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BOL            |
|                | 04/05/95       | 6.4                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
| W-11           | 04/05/95       | 2.2                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BOL            |
| W-14A          | 03/05/92       | NA.                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
|                | 04/15/92       | NA.                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
|                | 04/05/95       | 1.3                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
| W-15           | 03/03/95       | 4.0                | < 0.005           | < 0.005           | 0.042            | < 0.005          | < 0.005           | < 0.010            | 0.042          |
|                | 04/05/95       | 7.0                | < 0.005           | < 0.005           | 0.058            | 0.008            | < 0.005           | < 0.010            | 0.066          |
| W-16           | 04/05/95       | 1.2                | < 0.005           | < 0.005           | 0.100            | 0.017            | 0.017             | < 0.010            | 0.134          |
| W-17           | 12/02/93       | NA.                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
|                | 02/09/94       | NA.                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BOL            |
|                | 04/05/95       | 4.2                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
| W-18           | 04/04/95       | 2.1                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
| W-19B          | 04/05/95       | < 0.50             | < 0.005           | < 0.005           | 0.014            | 0.010            | < 0.005           | < 0.010            | 0.024          |
| W-20           | 04/04/95       | 0.89               | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
| W-22           | 04/04/95       | < 0.50             | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
| W-23           | 04/06/95       | 5.0                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
| W-24           | 03/04/92       | NA.                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
|                | 04/14/92       | NA NA              | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL.           |
|                | 04/03/95       | 2.6                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BOL            |
| W-25           | 04/04/95       | 5.9                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
| W-26           | 12/02/93       | NA.                | < 0.050           | < 0.050           | 1.600            | 0.100            | < 0.050           | < 0.100            | 1.700          |
|                | 02/07/94       | NA.                | < 0.050           | < 0.050           | < 0.050          | < 0.050          | 2.100 E           | ******             | 2.860 E        |
|                | 03/03/95       | 13                 | < 0.010           | < 0.010           | < 0.010          | 0.015            | 0.260             | 0.280              | 0.555          |
|                | 04/06/95       | 26                 | < 0.010           | < 0.010           | < 0.010          | 0.011            | 0.220             | 0.200              | 0.431          |
| W-27           | 03/05/92       | NA.                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BOL            |
|                | 04/14/92       | NA.                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
|                | 04/05/95       | 3.3                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
| W-28           | 04/05/95       | 0.64               | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
| W-29           | 04/05/95       | 1.9                | < 0.005           | < 0.005           | 0.021            | < 0.005          | < 0.005           | < 0.010            | 0.021          |
| W-30           | 03/04/92       | NA.                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
| -              | 04/15/92       | NA.                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |
|                | 04/04/95       | 1.4                | < 0.005           | < 0.005           | 0.006            | 0.006            | < 0.005           | < 0.010            | 0.012          |
| W-32           | 04/05/95       | 3.2                | < 0.005           | < 0.005           | < 0.005          | < 0.005          | < 0.005           | < 0.010            | BDL            |

#### TABLE 3-3

### HISTORICAL SUMMARY OF ORGANIC PARAMETERS DETECTED IN MONITORING WELL SAMPLES

### Westinghouse Commercial Nuclear Fuel Division Columbia, South Carolina

Project No. 33143.500

|        |             |                   | [       | <b></b>           |                        |                      |                    |                   |               |
|--------|-------------|-------------------|---------|-------------------|------------------------|----------------------|--------------------|-------------------|---------------|
| Well   | Sample      | No. 2<br>Fuel Oil | Benzene | Ethyl-<br>benzene | Tetrachloro-<br>ethene | Trichloro-<br>ethene | 1,2-DCE<br>(Total) | Vinyl<br>Chloride | Total<br>VOCs |
| Number | Date        | (mg/L)            | (mg/L)  | (mg/L)            | (mg/L)                 | (mg/L)               | (mg/L)             | (mg/L)            | (mg/L)        |
| W-33   | 03/05/92    | NA.               | < 0.005 | < 0.005           | 0.230                  | 0.110                | < 0.005            | < 0.010           | 0.340         |
|        | 04/14/92    | NA.               | < 0.005 | < 0.005           |                        | 0.097                | < 0.005            | < 0.010           | 0.307         |
|        | 02/09/94    | NA.               | < 0.025 | < 0.025           |                        | 0.140                | 0.035              | < 0.050           | 1.005         |
|        | 04/05/95    | 3.6               | < 0.005 | < 0.005           |                        | 0.034                | < 0.005            | < 0.010           | 0.134         |
| W-35   | 03/04/92    | NA.               | < 0.010 | < 0.010           | 0.110                  | 0.010                | 0.030              | < 0.020           | 0.150         |
|        | 04/15/92    | NA.               | < 0.025 | < 0.025           | 0.270                  | < 0.025              | 0.070              | < 0.050           | 0.340         |
|        | 02/09/94    | NA.               | < 0.025 | < 0.025           | 0.920                  | 0.120                | 0.290              | < 0.050           | 1.330         |
|        | 10/14/94    | 2.2               | <0.012  | < 0.0125          | 0.340                  | 0.042                | 0.120              | < 0.025           | 0.502         |
|        | 04/04/95    | 1.9               | < 0.010 | < 0.010           | 0.190                  | 0.018                | 0.042              | < 0.020           | 0.250         |
| W-36   | 03/04/92    | NA NA             | < 0.005 | < 0.005           | < 0.005                | < 0.005              | < 0.005            | < 0.010           | BDL           |
|        | 04/14/92    | NA.               | < 0.005 | < 0.005           | < 0.005                | < 0.005              | < 0.005            | < 0.010           | BDL           |
|        | 02/07/94    | NA.               | < 0.005 | < 0.005           |                        | < 0.005              | < 0.005            | < 0.010           | BOL           |
|        | 04/04/95    | 1.4               | < 0.005 | < 0.005           |                        | < 0.005              | < 0.005            | < 0.010           | BDL.          |
| W-37   | 12/02/93    | NA.               | < 0.005 | < 0.005           | < 0.005                | < 0.005              | < 0.005            | < 0.010           | BOL           |
|        | 02/09/94    | NA.               | < 0.005 | < 0.005           |                        | < 0.005              | < 0.005            | < 0.010           | BDL           |
|        | 10/14/94    | 3.8               | < 0.005 | < 0.005           |                        | < 0.005              | < 0.005            | < 0.010           | BOL           |
|        | 04/04/95    | 0.57              | < 0.005 | < 0.005           |                        | < 0.005              | < 0.005            | < 0.010           | BOL           |
| W-38   | 02/09/94    | NA.               | < 0.005 | < 0.005           | 0.010                  | 0.006                | < 0.005            | < 0.010           | 0.016         |
|        | 04/04/95    | 0.52              | < 0.005 | < 0.005           |                        | < 0.005              | < 0.005            | < 0.010           | 0.014         |
| W-39   | 02/07/94    | NA.               | < 0.050 | < 0.050           | 1.500                  | 0.120                | < 0.050            | < 0.100           | 1.620         |
| 00     | 04/04/95    | 2.1               | < 0.020 | < 0.020           |                        | 0.063                | < 0.020            | < 0.040           | 0.533         |
| W-40   | 10/26/93    | NA.               | < 0.005 | < 0.005           | 0.110                  | 0.021                | < 0.005            | < 0.010           | 0.131         |
| 11-10  | 02/09/94    | NA.               | < 0.005 | < 0.005           |                        | < 0.005              | < 0.005            | < 0.010           | BDL           |
|        | 10/14/94    | 0.50              | < 0.005 | < 0.005           |                        | < 0.005              | < 0.005            | < 0.010           | BDL           |
|        | 04/06/95    | < 0.50            | < 0.010 | < 0.010           |                        | 0.120                | < 0.010            | < 0.020           | 0.430         |
| W-41   | 02/07/94    | NA.               | < 0.050 | < 0.050           | 1.100                  | 0.230                | < 0.050            | < 0.100           | 1,330         |
| ••     | 04/03/95    | 4.3               | < 0.025 | < 0.025           |                        | 0.100                | < 0.025            | < 0.050           | 1.010         |
| W-42   | 02/07/94    | NA.               | < 0.005 | < 0.005           | < 0.005                | < 0.005              | < 0.005            | < 0.010           | BOL           |
|        | 10/14/94    | 0.64              | < 0.005 | < 0.005           |                        | < 0.005              | < 0.005            | < 0.010           | BDL           |
|        | 03/03/95    | 2.6               | < 0.005 | < 0.005           |                        | < 0.005              | < 0.005            | < 0.010           | BOL           |
|        | 04/04/95    | < 0.50            | < 0.005 | < 0.005           |                        | < 0.005              | < 0.005            | < 0.010           | BDL           |
| W-43   | 02/07/94    | NA.               | < 0.005 | < 0.005           | < 0.005                | < 0.005              | < 0.005            | < 0.010           | BDL           |
| .,     | 04/03/95    | < 0.50            | < 0.005 | < 0.005           |                        | < 0.005              | < 0.005            | < 0.010           | BDL           |
| W-44   | 02/07/94    | NA.               | < 0.005 | < 0.005           | < 0.005                | < 0.005              | < 0.005            | < 0.010           | BOL           |
|        | 04/03/95    | 1.4               | < 0.005 | < 0.005           |                        | < 0.005              | < 0.005            | < 0.010           | BDL           |
| W-45   | 03/08/94    | 9.9               | 0.013   | 0.005             | 0.012                  | < 0.005              | 0.140              | < 0.010           | 0.170         |
|        | 10/14/94    | 25                | 0.012   | < 0.005           |                        | < 0.005              | 0.130              | < 0.010           | 0.150         |
|        | 04/04/95    | 88                | 0.005   | < 0.005           |                        | < 0.005              | 0.060              | < 0.010           | 0.073         |
| W-46   | 04/04/95    | < 0.50            | < 0.005 | < 0.005           | < 0.005                | < 0.005              | < 0.005            | < 0.010           | BDL           |
| W-47   | 04/04/95    | 0.60              | < 0.005 | < 0.005           | < 0.005                | < 0.005              | < 0.005            | < 0.010           | BDL           |
| W-48   | 04/04/95    | < 0.50            | < 0.005 | < 0.005           | 0.880                  | 0.170                | 1.100              | 0.550             | 2.700         |
|        | •           | į                 | l       |                   |                        |                      |                    |                   |               |
| W-49   | 04/04/95    | < 0.50            | < 0.005 | < 0.005           | < 0.005                | < 0.005              | < 0.005            | < 0.010           | BDL           |
| W-50   | 04/06/95    | 10                | < 0.005 | < 0.005           |                        | < 0.005              | < 0.005            | < 0.010           | BOL           |
|        | 06/29/95    | < 0.50            | NA.     | NA                | . NA                   | NA                   | NA                 | NA                | NA NA         |
| RW-1   | 04/04/95    | < 0.50            | < 0.005 | < 0.005           | 0.049                  | 0.009                | < 0.005            | < 0.010           | 0.058         |
| RW-2   | 04/04/95    | < 0.50            | < 0.005 | < 0.005           | 0.150                  | 0.045                | < 0.005            | < 0.010           | 0.195         |
|        | <del></del> | l                 | 1       | 2.730             |                        | 2,0.0                | 2.200              | 3.0.0             | ]             |

Notes:

mg/L = Milligrams per liter.
1,2-DCE = 1,2-Dichloroethene.
BDt. = Below Detection Limit.
NA = Not analyzed.
E = Concentration exceeded calibration range.

TABLE 3-4
SUMMARY OF INORGANIC PARAMETERS
DETECTED IN MONITORING WELL SAMPLES

Project No. 33143.500

| Well<br>Number | Sample<br>Date | Ammonia<br>(mg/L) | Fluoride<br>(mg/L) | Nitrate<br>(mg/L) | Gross Alpha<br>(pCl/mL) | Gross Beta<br>(pCi/mL) |
|----------------|----------------|-------------------|--------------------|-------------------|-------------------------|------------------------|
| W-3A           | 04/05/95       | < 0.1             | < 0.1              | < 0.02            | 0.003                   | 0.004                  |
| W-4            | 04/05/95       | 3.9               | 7.2                | < 0.02            | 0.003                   | 0.017                  |
| W-6            | 04/04/95       | 2.4               | < 0.1              | 52                | 0.012                   | 1.953                  |
| W-7A           | 04/05/95       | 100               | 38                 | 31                | 0.010                   | 0.125                  |
| W-10           | 04/05/95       | 10                | 4.2                | 4.6               | 0.002                   | 0.006                  |
| W-11           | 04/05/95       | 0.1               | < 0.1              | 10                | < 0.002                 | 0.628                  |
| W-14A          | 04/05/95       | 0.2               | < 0.1              | 0.49              | < 0.002                 | 0.003                  |
| W-15           | 04/05/95       | 21                | 4.1                | 30                | 0.003                   | 0.052                  |
| W-16           | 04/05/95       | 65                | 18                 | 8.2               | 0.008                   | 0.007                  |
| W-17           | 04/05/95       | 8.3               | 1.7                | 25                | < 0.002                 | 0.218                  |
| W-18           | 04/04/95       | 40                | 15                 | 77                | 0.012                   | 0.191                  |
| W-19B          | 04/05/95       | < 0.1             | < 0.1              | 5.3               | 0.002                   | < 0.003                |
| W-20           | 04/04/95       | < 0.1             | < 0.1              | 6.5               | 0.005                   | < 0.003                |
| W-22           | 04/04/95       | 90                | 13                 | 46                | 0.010                   | 0.008                  |
| W-23           | 04/06/95       | < 0.1             | < 0.1              | 7.0               | 0.007                   | < 0.003                |
| W-24           | 04/03/95       | < 0.1             | < 0.1              | < 0.02            | 0.003                   | 0.131                  |
| W-25           | 04/04/95       | 0.2               | < 0.1              | < 0.02            | NA                      | NA                     |
| W-26           | 04/06/95       | 14                | 3.3                | 4.9               | 0.005                   | 0.006                  |
| W-27           | 04/05/95       | 2.3               | 0.1                | < 0.02            | 0.003                   | 0.006                  |
| W-28           | 04/05/95       | 0.2               | 9.4                | 26                | 0.025                   | 0.011                  |
| W-29           | 04/05/95       | 27                | 6.4                | 19                | 0.014                   | 0.035                  |
| W-30           | 04/04/95       | 50                | 15                 | 190               | 0.036                   | 0.040                  |

TABLE 3-4 **SUMMARY OF INORGANIC PARAMETERS DETECTED IN MONITORING WELL SAMPLES** 

Project No. 33143.500

| Well<br>Number | Sample<br>Date | Ammonia<br>(mg/L) | Fluoride<br>(mg/L) | Nitrate<br>(mg/L) | Gross /<br>(pCi/i |       |   | Beta<br>Ci/mL) |
|----------------|----------------|-------------------|--------------------|-------------------|-------------------|-------|---|----------------|
| W-32           | 04/05/95       | 77                | 18                 | 33                | <                 | 0.002 |   | 0.226          |
| W-33           | 04/05/95       | < 0.1             | 0.1                | 6.2               |                   | 0.013 |   | 0.011          |
| W-35           | 04/04/95       | 0.1               | < 0.1              | 6.0 -             | <                 | 0.002 |   | 0.007          |
| W-36           | 04/04/95       | < 0.1             | < 0.1              | 0.36              | <                 | 0.002 |   | 0.009          |
| W-37           | 04/04/95       | < 0.1             | < 0.1              | 3.4               | <                 | 0.002 |   | 0.013          |
| W-38           | 04/04/95       | 0.5               | 0.1                | 7.1               |                   | 0.007 |   | 0.009          |
| W-39           | 04/04/95       | < 0.1             | < 0.1              | 26                | <                 | 0.002 |   | 0.061          |
| W-40           | 04/06/95       | < 0.1             | < 0.1              | 5.7               | <                 | 0.002 |   | 0.019          |
| W-41           | 04/03/95       | < 0.1             | < 0.1              | 16                | <                 | 0.002 |   | 0.044          |
| W-42           | 04/04/95       | 14                | 1.0                | 9.4               | <                 | 0.002 | < | 0.004          |
| W-43           | 04/03/95       | < 0.1             | < 0.1              | 4.2               | <                 | 0.002 | < | 0.003          |
| W-44           | 04/03/95       | < 0.1             | < 0.1              | 7.8               | <                 | 0.002 | < | 0.004          |
| W-45           | 04/04/95       | 1.5               | 0.7                | 1.4               | <                 | 0.002 | < | 0.004          |
| W-46           | 04/04/95       | 0.7               | < 0.1              | 5.0               |                   | NA    |   | NA             |
| W-47           | 04/04/95       | 57                | 4.4                | 17                | <                 | 0.003 |   | 0.145          |
| W-48           | 04/04/95       | 6.1               | < 0.1              | 5.1               | <                 | 0.002 | < | 0.004          |
| W-49           | 04/04/95       | < 0.1             | < 0.1              | < 0.02            | <                 | 0.002 | < | 0.004          |
| W-50           | 04/06/95       | < 0.1             | < 0.1              | < 0.02            |                   | 0.005 | < | 0.004          |
| RW-1           | 04/04/95       | 0.1               | < 0.1              | 2.6               | <                 | 0.002 | < | 0.004          |
| RW-2           | 04/04/95       | 0.4               | 0.3                | 12                | <                 | 0.002 | < | 0.004          |

Notes:

mg/L = Milligrams per liter. pCi/mL = Picocuries per milliliter.

NA = Not analyzed.

RAI-10 Attachment

TABLE 3-2
SUMMARY OF PARAMETERS DETECTED IN GEOPROBE SOIL SAMPLES

### Westinghouse Commercial Nuclear Fuel Division Columbia, South Carolina

Project No. 33143.500

|          |              |           |            |                           |         | Volatile Org | anic Compound | ds (VOCs)  |                               |            |            |
|----------|--------------|-----------|------------|---------------------------|---------|--------------|---------------|------------|-------------------------------|------------|------------|
|          |              | Total Die | sel Range  | Acetone Tetrachloroethene |         |              | Trichloroe    | athene     | 1,2-Dichloroethene<br>(Total) | Total VOCs |            |
| Geoprobe | Sample Depth | Field     | Laboratory | Laboratory                | Field   | Laboratory   | Field         | Laboratory | Field Laboratory              | Field      | Laboratory |
| Location | (Feet)       | (mg/kg)   | (mg/kg)    | (mg/kg)                   | (mg/kg) | (mg/kg)      | (mg/kg)       | (mg/kg)    | (mg/kg) (mg/kg)               | (mg/kg)    | (mg/kg)    |
| GP-1     | 3            | 0.053     | NA         | NA                        | 4.1     | NA           | 0.356         | NA         | 0.014 NA                      | 4.5        | NA         |
| GP-1     | 11           | < 0.025   | NA         | NA                        | 0.015   | NA           | < 0.002       | NA         | < 0.005 NA                    | 0.015      | NA         |
| GP-2     | 3            | < 0.025   | NA         | NA                        | < 0.002 | NA           | < 0.002       | NA         | < 0.005 NA                    | BDL        | NA         |
| GP-2     | 11           | < 0.025   | NA         | NA                        | < 0.002 | NA           | < 0.002       | NA         | < 0.005 NA                    | BDL        | NA         |
| GP-3     | 3            | < 0.025   | < 10       | < 0.010                   | < 0.002 | < 0.005      | < 0.002       | < 0.005    | < 0.005 < 0.005               | 8DL        | BDL        |
| GP-3     | 11           | < 0.025   | NA         | NA                        | 0.011   | NA           | < 0.002       | NA         | < 0.005 NA                    | 0.011      | NA         |
| GP-4     | 3            | < 0.025   | NA         | NA                        | < 0.002 | NA           | < 0.002       | NA         | < 0.005 NA                    | BDL        | NA         |
| GP-4     | 11           | < 0.025   | < 10       | 0.012                     | < 0.002 | 0.012        | < 0.002       | < 0.005    | < 0.005 < 0.005               | BDL        | 0.024      |
| GP-5     | 3            | < 0.025   | NA         | NA                        | < 0.002 | NA           | < 0.002       | NA         | < 0.005 NA                    | BDL        | NA         |
| GP-5     | 11           | 0.061     | NA         | NA                        | < 0.002 | NA           | < 0.002       | NA         | < 0.005 NA                    |            | NA         |
| GP-6     | 3            | < 0.025   | 21 *       | 0.015                     | 0.004   | < 0.005      | < 0.002       | < 0.005    | < 0.005 < 0.005               | 0.004      | 0.015      |
| GP-6     | 11           | < 0.025   | NA         | NA                        | < 0.002 | NA           | 0.002         | NA         | 0.005 NA                      | 0.007      | NA         |
| GP-7     | 5            | < 0.025   | NA         | NA                        | < 0.002 | NA           | < 0.002       | NA         | < 0.005 NA                    | BDL        | NA         |
| GP-7     | 11           | 73.4      | NA         | NA                        | 0.007   | NA           | 0.005         | NA         | 0.006 NA                      | 0.018      | NA         |
| GP-8     | 3            | < 0.025   | NA         | NA                        | 0.274   | NA           | 0.003         | NA         | < 0.005 NA                    | 0,277      | NA         |
| GP-8     | 11           | < 0.025   | < 10       | < 0.010                   |         | < 0.005      | < 0.002       | < 0.005    | < 0.005 < 0.005               | BDL        | BDL        |
| GP-9     | 3            | < 0.025   | 79 °       | 0.051                     | < 0.002 | 0.014        | < 0.002       | < 0.005    | < 0.005 < 0.005               | BDL        | 0.065      |
| GP-9     | 11           | < 0.025   | NA         | NA                        | < 0.002 | NA           | < 0.002       | NA         | < 0.005 NA                    | BDL        | NA         |
| GP-10    | 3            | < 0.025   | NA         | NA                        | < 0.002 | NA           | < 0.002       | NA         | < 0.005 NA < 0.005 NA         | BDL        | NA         |
| GP-10    | 11           | 19.3      | NA         | NA                        | 0.129   | NA           | < 0.002       | NA         |                               | 0.129      | NA         |

70

**TABLE 3-2** SUMMARY OF PARAMETERS DETECTED IN GEOPROBE SOIL SAMPLES

### Westinghouse Commercial Nuclear Fuel Division Columbia, South Carolina

Project No. 33143.500

| <del></del>    |              |                    |            |            |                    | Volatile Org  | anic Compo         | unds (VOCs)   |                                  |         |            |
|----------------|--------------|--------------------|------------|------------|--------------------|---------------|--------------------|---------------|----------------------------------|---------|------------|
|                |              | Total Dies         | sel Range  | Acetone    | Tetrach            | loroethene    | Trichio            | roethene      | 1,2-Dichloroethene<br>(Total)    | Total   | VOCs       |
| Geoprobe       | Sample Depth | Field              | Laboratory | Laboratory | Field              | Laboratory    | Field              | Laboratory    | Field Laboratory (mg/kg) (mg/kg) | Field   | Laboratory |
| Location       | (Feet)       | (mg/kg)            | (mg/kg)    | (mg/kg)    | (mg/kg)            | (mg/kg)       | (mg/kg)            | (mg/kg)       |                                  | (mg/kg) | (mg/kg)    |
| GP-11          | 5            | 0.076              | NA         | NA         | < 0.002            | NA            | < 0.002            | NA            | < 0.005 NA                       | BDL     | NA         |
| GP-11          | 11           | 40.3               | 7200       | < 12.5     | < 0.002            | < 6.25        | < 0.002            | < 6.25        | 0.052 < 6.25                     | 0.052   | BDL        |
| GP-12          | 3            | < 0.025            | NA         | NA         | < 0.002            | NA            | < 0.002            | NA            | < 0.005 NA NA                    | BDL     | NA         |
| GP-12          | 9            | < 0.025            | NA         | NA         | < 0.002            | NA            | < 0.002            | NA            |                                  | BDL     | NA         |
| GP-13<br>GP-13 | 5<br>11      | < 0.025<br>< 0.025 | < 10<br>NA | < 0.010    | < 0.002<br>< 0.002 | < 0.005<br>NA | < 0.002<br>< 0.002 | < 0.005<br>NA | < 0.005 < 0.005<br>< 0.005 NA    | BDL     | BDL<br>NA  |
| GP-14          | 3            | < 0.025            | NA         | NA         | < 0.002            | NA            | < 0.002            | NA            | < 0.005 NA                       | BDL     | NA         |
| GP-14          | 5            | < 0.025            | NA         | NA         | < 0.002            | NA            | < 0.002            | NA            | < 0.005 NA                       | BDL     | NA         |
| GP-14          | 11           | < 0.025            | NA         | NA         | < 0.002            | NA            | < 0.002            | NA            | < 0.005 NA                       | BDL     | NA         |
| GP-15          | 3            | < 0.025            | < 10       | < 0.010    | < 0.002            | < 0.005       | < 0.002            | < 0.005       | < 0.005 < 0.005                  | BDL     | BDL        |
| GP-15          | 11           | < 0.025            | NA         | NA         | < 0.002            | NA            | < 0.002            | NA            | < 0.005 NA                       | BDL     | NA         |
| GP-16          | 3            | < 0.025            | NA         | NA         | < 0.002            | NA            | < 0.002            | NA            | < 0.005 NA                       | BDL     | NA         |
| GP-16          | 9            | < 0.025            | NA         | NA         | < 0.002            | NA            | < 0.002            | NA            | < 0.005 NA                       | BDL     | NA         |
| GP-17          | 5            | < 0.025            | NA         | NA         | < 0.002            | NA            | < 0.002            | NA            | < 0.005 NA NA NA                 | BDL     | NA         |
| GP-17          | 11           | < 0.025            | NA         | NA         | < 0.002            | NA            | < 0.002            | NA            |                                  | BDL     | NA         |
| GP-18          | 3            | < 0.025            | NA         | NA         | < 0.002            | NA            | < 0.002            | NA            | < 0.005 NA 0.005 NA              | BDL     | NA         |
| GP-18          | 9            | < 0.025            | NA         | NA         | < 0.002            | NA            | < 0.002            | NA            |                                  | BDL     | NA         |

Notes:

mg/kg = Milligrams per kilogram.
Field analyses performed by Microseeps.
Laboratory analyses performed by IEA, Inc.
\* = Did not match typical No. 2 Fuel Oil pattern.
BDL = Below Detection Limit.

NA = Not analyzed.

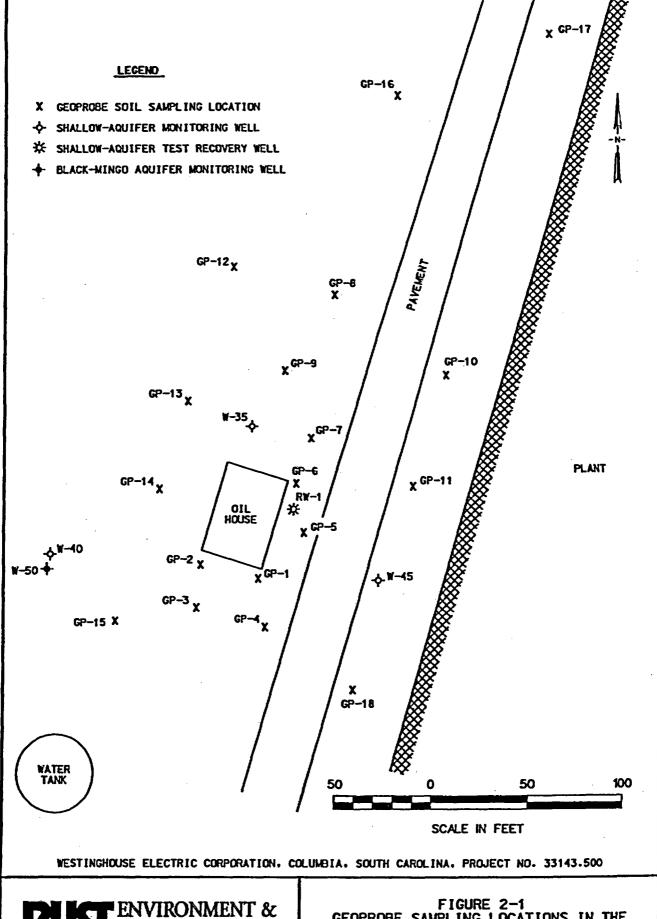
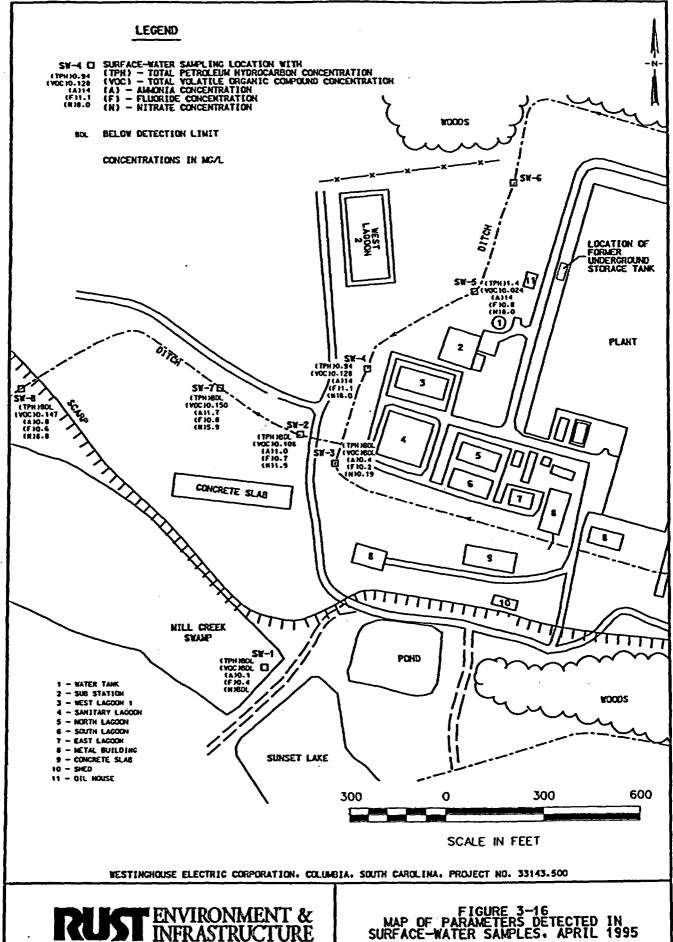




FIGURE 2-1
GEOPROBE SAMPLING LOCATIONS IN THE VICINITY OF THE OIL HOUSE



RUST ENVIRONMENT & INFRASTRUCTURE

FIGURE 3-4
MAP OF VOLATILE ORGANIC COMPOUND
CONCENTRATIONS DETECTED IN
GEOPROBE SOIL SAMPLES



RUST ENVIRONMENT & INFRASTRUCTURE

# RAI-14 Attachment



#### **Environmental Services Department**

Inter-Office Correspondence

## Corporate Environmental Auditing (Ofice)

Substation Site (Westinghouse)

Date: 9-15-03

Phase I Environmental Site Assessment

τα Paulette Ritter Mike Ferres From: Lee Newman

Please find attached the Phase I Environmental Site Assessment for the alternate property identified on September 11, 2003. This assessment did not reveal conditions that would preclude the purchase of the subject property. Please note that the location/layout of the property as depicted in Figures 1 & 2 is approximate, being that a survey drawing was not available at the time of the site inspection.

It is our understanding that future construction activities for transmission lines are planned in the area of the Westinghouse property suspected to have appreciable amounts of contamination in subsurface soils and groundwater. It is anticipated that subsurface disturbance during construction activities (e.g. subsurface borings for transmission line poles) could be at a sufficient depth to encounter contaminants, if performed within the suspected area of contamination. Please find attached a map obtained through a Freedom of Information Act (FOIA) review at the SCDHEC, which provides an approximate location of the Perchloroethylene groundwater contamination plume. It is recommended that if the disturbance of subsurface soils will take place in this area of concern, then environmental, health, and safety precautions should be incorporated into the project work plan to address:

- the potential exposure of workers to radionuclides (Alpha and Beta particles) and conventional pollutants (Ammonia, Fluorides, Nitrates, & Perchloroethylene); and
- the-management of potentially contaminated soils & decontamination of company and contractor equipment.

Assistance regarding worker health and safety precautions can be obtained from Randy French/SCE&G Safety Department (extension 75263). Assistance regarding the management of contaminated soils and equipment decontamination can be obtained from Laura Blake-Ort/SCANA CESD - Wires Support Group (extension 77132).

We hope that our services have been responsive to your needs and we appreciate the opportunity to assist with this project. If you have any questions, please contact me at extension 78378 or Duane Moss at extension 77324.



#### **Environmental Services Department**

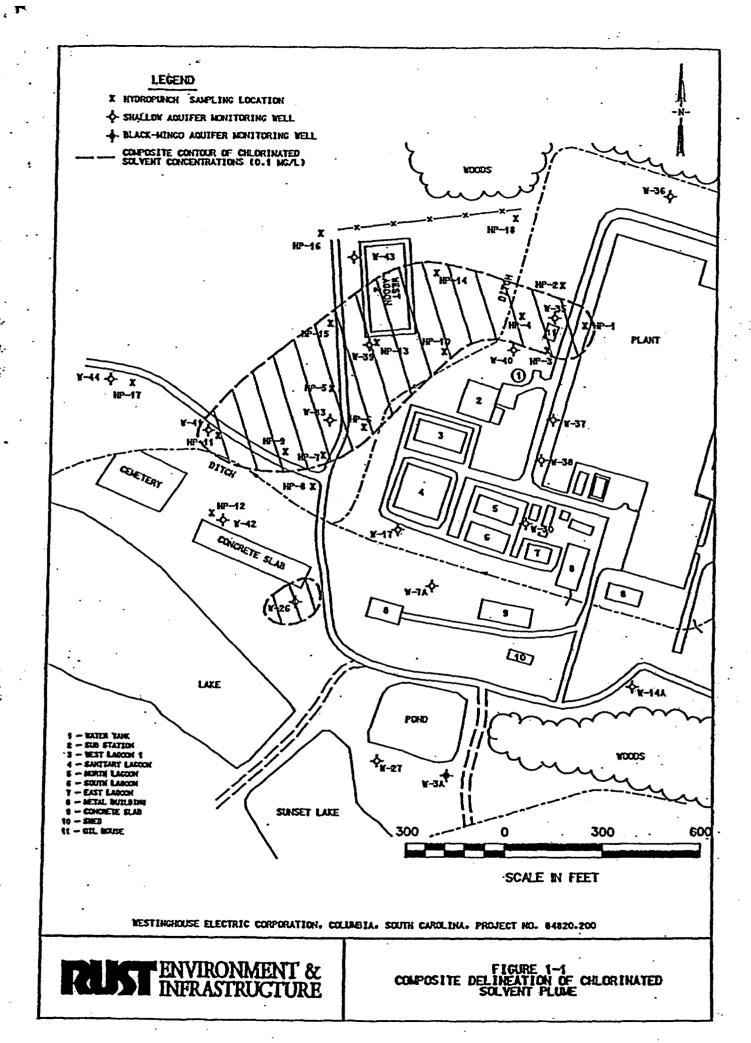
#### **Attachments**

- Drawing by RUST Environment & Infrastructure entitled "Figure 1-1 Composite Delineation of Chlorinated Solvent Plume"
- Phase I Environmental Site Assessment Report

cc: R.R. Mahan

D.E. Burkhalter (K-16)

D.R. Moss


T.G. Eppink (130)

G.A. Lawhon (S-38)

Rew. Thomas, Jr. (K-64)

R.C. Lindler (03A)

T.N. Effinger/File



# PHASE I ENVIRONMENTAL SITE ASSESSMENT REPORT

# Alternate Proposed Hopkins Substation Site Highway 48 Hopkins, SC 29061 Richland County

(to the north of the Westinghouse Electric Corporation Nuclear Fuel Division Facility located at 5801 Bluff Road, Columbia, SC 29250)

**September 15, 2003** 



## **FOREWORD**

This document has been prepared for the exclusive use of SCANA Corporation and its subsidiaries, as applicable. It is not approved to be given or otherwise distributed in any manner to any entity outside of said corporation and its subsidiaries. Requests to authorize the distribution of this report outside of the corporation must be made to the Legal Department or to the General Manager, Corporate Environmental Services Department. SCANA Corporation accepts no liability from the unauthorized use of this document.

...

#### Phase I Environmental Site Assessment Report

#### **TABLE OF CONTENTS**

| TRODUCTION                                                                  | 1          |
|-----------------------------------------------------------------------------|------------|
| .1 Project Description                                                      | 1          |
|                                                                             |            |
| .3 Scope of Work:                                                           | 1          |
| .4 Limitations and Exceptions of this Assessment                            | <b>2</b>   |
| TE DESCRIPTION                                                              | 5          |
| .1 Location and Legal Description                                           | 5          |
|                                                                             |            |
| .3 Geologic Conditions & Physical Setting                                   | 5          |
| .4 Descriptions of Structures, Roads and Other Improvements of the Property | 5          |
| _5 Environmental Liens                                                      | 6          |
| .6 Current and Past Use of the Property                                     | 6          |
| .7 Adjacent Properties                                                      | 6          |
| RECORDS REVIEW                                                              | 7          |
| 1 Purpose                                                                   | 7          |
| .2 Standard Environmental Record Sources, Federal and State                 | 7          |
| NFORMATION FROM SITE RECONNAISSANCE                                         |            |
| ND INTERVIEWS                                                               | 8          |
| 1 Comments & Observations                                                   | . 8        |
|                                                                             |            |
|                                                                             | •••••••••• |
| INDINGS & CONCLUSIONS                                                       | 9          |
| 1 Findings                                                                  | 9          |
| 2 Conclusions                                                               | 9          |
| IGNATURE PAGE                                                               |            |
|                                                                             | 2 Purpose  |

#### SECTION 1.0 - INTRODUCTION

#### 1.1 Project Description

SCANA Services Corporate Environmental Services Department (CESD) was requested to perform a Phase I Environmental Site Assessment of a 6.89 acre tract of land located in Hopkins, South Carolina. More specifically, the property was to the west of the Westinghouse Electric Nuclear Fuels Facility, located at 5801 Bluff Road. The procurement of the property was in preparation for the siting of a new substation. The Phase I report for this property was issued July 31, 2003. From subsequent meetings with stakeholders (Power Delivery SBU), it was determined that an alternate property for the proposed substation should be pursued.

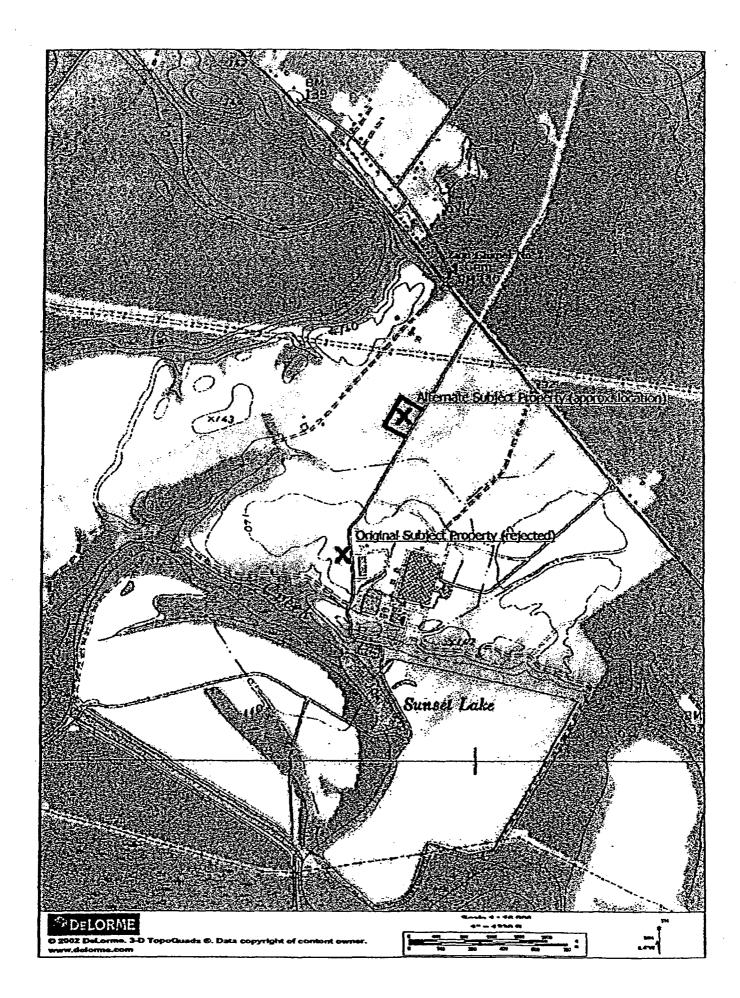
On Thursday, September 11, 2003, an alternate location was identified and inspected. This Phase I report has been prepared to document further assessment work in this geographic area for the alternate subject property. Duane Moss and Lee Newman of the SCANA Services CESD performed the site inspection. See Figure 1 for a site location map and Figure 2 for a topographic map of the area. Please note that a survey of the alternate property was not available during the site inspection, therefore, its location/layout as depicted in Figure 1 and Figure 2 should be considered approximate. For the purposes of this report, the alternate property is hereafter referred to as the "subject property".

#### 1.2 Purpose

The performance of an Environmental Site Assessment is to develop sufficient information to allow the assessor to ascertain if the past or present uses of the subject property have resulted in environmental impact. The past and present uses of adjacent property, which could influence the environmental condition of the subject property, are also taken into consideration. Ultimately, the findings of the assessment are evaluated to determine whether recognized environmental conditions (i.e. impact determined to be detrimental to the environmental condition of the property) would preclude its purchase. The performance of an assessment, is intended to reduce, but can never eliminate, uncertainty regarding the potential for recognized environmental conditions about the property.

#### 1.3 Scope of Work

The scope of work performed and methodology used to complete the work scope included the following:


- Site inspection of the subject property and observation of adjacent properties and vicinity.
- Review of regulatory agency records to identify and assess listings at the subject site or proximal sites, through a commercial database search;
- Review of site history/land use through interviews (whenever possible), a review of deed records, and through a search of available historical data; and.
- Preparation of this report, which describes all work performed and presents a discussion of the findings of the assessment.

#### 1.4 Limitations and Exceptions of this Assessment

The scope of this environmental assessment does not address several potential issues. The limitation issues are: radon gas testing; inspection for the presence of asbestos containing materials and lead-based paint for any existing structures/debris located on the subject property; testing for the presence of lead in drinking water within any existing structures on site; the testing for the presence of contaminants in groundwater and surface water; and the delineation of jurisdictional wetlands.

Exceptions for this assessment are as follows:

 Historical fire insurance maps and city directories were not consulted during this assessment, due to the rural (past/present) nature of the location of the subject property.



÷

*্* জ

#### 2.5 Environmental Liens

There was no record of a (NPL) Superfund Lien filed by the USEPA against the subject property.

#### 2.6 Current & Past Use of the Property

The property is currently used for silvicultural purposes (softwood - pine). A review of the chain-of-title information indicates that the property was not used for commercial purposes until 1967, when purchased by Westinghouse Electric Corporation. Although owned by Westinghouse, the prior property owner possessed farming rights until the late 1980's.

#### 2.7 Adjacent Properties

With the exception of the nearby Westinghouse facility to the south, the adjacent properties were owned by Westinghouse and undeveloped (with the exception of the gravel road bordering the subject property to the east and the employee walking/jogging trail further to the east) or used for silvicultural purposes at the time of the site inspection. Please see discussion in Section 4.1 regarding the Westinghouse facility.

#### SECTION 4.0 - INFORMATION FROM SITE RECONNAISSANCE AND INTERVIEWS

#### 4.1 Comments & Observations

There were no recognized environmental conditions at the subject property during the site inspection on September 11, 2003. Although a wetlands delineation was not within the scope of this assessment, the assessors did not observe the total characteristics typical of wetlands.

The Westinghouse facility (to the south of the subject property) manufactures nuclear fuel assembly rods. The facility has experienced two documented groundwater contamination events since 1981. The first involved a release of fluorides, which has since received "No Further Action". The second event was discovered during February of 1989 during a regulatory inspection. In response to the findings of the inspection, the facility performed a groundwater assessment that identified Perchloroethylene (aka Tetrachloroethylene, a volatile organic compound that is a dense non-aqueous phase liquid) contamination, moving towards the southwest. It was confirmed that the plume was limited to the uppermost aquifer. The depth to the aquifer was found to be at a depth ranging from 15 to 30 feet below land surface (1995 data). Note that this was the static water level taken during the sampling event, and does not take into consideration the "true" rise and fall of the level of groundwater over time. An Air Sparge/Soil Vacuum Extraction (AS/SVE) system was installed to remediate the plume and remediation is ongoing.

In addition to the groundwater releases, the facility operates a number of NPDES permitted surface impoundments (i.e. lagoons) to treat the wastewater generated from their manufacturing efforts, as well as for sanitary sewage. There is a groundwater monitoring network in place for said lagoons, as required by their NPDES permit. Pollutants analyzed for under their groundwater monitoring plan include radionuclides (Alpha and Beta particles), Ammonia, Fluorides, and Nitrates.

From data generated by Westinghouse's consultant (RUST), it appears that the Perchloroethylene groundwater contamination plume's closest point is approximately 2,000 feet to the south of the subject property. For reiterative purposes, groundwater migration in the uppermost aquifer is from the Westinghouse facility to the southwest (generally moving away from the subject property).

#### 4.2 Interview List

| NAME              | AGENCY / COMPANY AFFILIATION         |
|-------------------|--------------------------------------|
| Mr. Pete Roebuck  | Maintenance Manager, Westinghouse    |
| Mr. Roger Fischer | Environmental Engineer, Westinghouse |

#### Section 5.0 - Findings & Conclusions

#### 5.1 Findings

The SCRDI-Bluff Road Site, a National Priority List (i.e. SUPERFUND) site, is located within a one-mile radius of the subject property. At the time of this assessment, the SCRDI-Bluff Road Site does not appear to have detrimentally impacted the subject property, and clean-up activities are ongoing under the direction of the USEPA and the SCDHEC.

There were no recognized environmental conditions associated with the current and past use of the subject property that would indicate a detrimental impact to the subject property. The Westinghouse facility has impacted groundwater quality in the area, however, groundwater contamination is to the south of the subject property and groundwater movement is from the Westinghouse facility to the southwest. It is unlikely that the subject property has been impacted by the historical groundwater contamination episodes discovered/reviewed during this assessment.

#### 5.2 Conclusions

This assessment did not reveal conditions that would preclude the purchase of the subject property, nor did it reveal conditions that would have environmental, health and safety implications for the disturbance of subsurface soils and groundwater at the subject property during construction of the substation.

#### SECTION 6.0 - SIGNATURE PAGE

Any questions regarding this report should be directed to Lee Newman (ext. 78378) or Duane Moss (ext. 77324).

T. Lee Newman, Jr., REPA

National Registry of Environmental Professionals Registered Environmental Property Assessor

**REPA#3022** 

